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Abstract  

One of primary concerns during pregnancy is the challenge of accurate monitoring of Fetal Heart Rate (FHR) and 

interpretation of cardiogram data to help determine the condition of the baby. The aim of this study is to present a 

classification model for cardiotocogram machines using Feed-forward Neural Network (FNN). The dataset for this 

study was collected from the Kaggle repository. The data consist of 2126 fetal cardiotocogram (CTG) data with 42 

attributes, span across three classes of normal, suspect and pathology. The data was processed using noise filtering, 
normalization and then splitted into training, testing, and validation set in the ratio of f 70:20:10. FFNN was then 

trained using the data and Levenberg-Marquardt as the optimization technique. The model generated was evaluated 

and the results reported 90.3% accuracy, 81.9% sensitivity, 82% specificity, and 80.9% precision. Comparative 

analysis with other state of the art algorithm was performed, with the results showing the competence of the new 

cardiotocogram classification model among the best. The model was recommended to improve operation and 

functionality of CTC machine. 
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1. INTRODUCTION 

A cardiotocogram (CTG) machine is essential equipment used in monitoring and recording fetal heart rate (FHR) and 

Uterine Contractions (UC) to assess fetal health and well-being (Ponsiglione et al., 2021). It is frequently used to 

identify fetal distress during pregnancy and childbirth. This process makes provision for prompt interventions and 

lowers the possibility of unfavourable newborn outcomes (Abiyev et al., 2023). In order to lower prenatal mortality 

and morbidity (Zarko et al., 2017), CTG is very essential, especially when fetal distress is detected early. Medical 

professionals can take well-informed action, such as carrying out emergency interventions, which may save the 

mother's and the fetus' lives (Muhammad et al., 2022). With this implication, clinical decision-making relies heavily on 

the appropriate interpretation of CTG data. The traditional CTG interpretation is subjective and frequently differs 

greatly amongst doctors, due to inconsistency and variation of diagnosis result. This variation has the potential to 

affect therapeutic outcomes and result in needless interventions by producing false-positive and false-negative 

diagnoses (Asfaw et al., 2023). Accurate analysis of FHR and UC patterns is difficult due to their intrinsic complexity 

and non-linearity (Rongdan et al., 2021). Despite their usefulness, current interpretation standards fall short in 

capturing the complexities of CTG signals, which results in limitations in both sensitivity and specificity (Sahana et 

al2023). The sensitivity needed to precisely identify uncommon or intricate patterns in CTG data is frequently lacking 

in rule-based and statistical algorithms. They might perform poorly in clinical contexts, which would limit the overall 

efficacy of automated CTG interpretation and its dependability in crucial situations. Current automated CTG analysis 

systems frequently use linear statistical techniques and rule-based algorithms. Although helpful, these techniques are 

ill-suited to deal with the complicated and non-linear nature of CTG data, and they could overlook minute patterns that 

might point to fetal discomfort. The sensitivity needed to precisely identify uncommon or intricate patterns in CTG 

data is frequently lacking in rule-based and statistical algorithms. They might therefore perform poorly in clinical 

contexts, which would reduce the reliability and overall efficacy of automated CTG interpretation. Research has 
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shown that Artificial Neural Networks (ANN) are effective in a variety of medical applications, including image and 

signal analysis. Previous studies presented by different authors revealed that ANN models trained on CTG data can 

significantly enhance the accuracy of fetal distress detection, with higher sensitivity and specificity than conventional 

methods. ANN are a subset of machine learning algorithms inspired by the structure of the human brain, known for 

their powerful pattern recognition capabilities (Alexandros et al., 2024). ANNs are specifically suited for analyzing 

medical signals like CTG because they can learn from large datasets, identifying intricate patterns that traditional 

methods may miss. By putting into practice an ANN-based model intended to increase the accuracy of CTG analysis, 

this work seeks to overcome the shortcomings of conventional and rule-based CTG interpretation techniques. This 

study aims to develop a more dependable and consistent fetal monitoring tool by utilizing Feedforward Neural 

Network (FFNN) classification capabilities. By lowering the possibility of misunderstandings, providing doctors with 

unbiased data, and eventually enhancing patient outcomes, the incorporation of a precise, FFNN, an ANN-driven CTG 

analysis system, has the potential to revolutionize fetal monitoring. This automated method will be very helpful, 

especially in high-stress labour and delivery settings where prompt and precise assessments are vital. The arrangement 

of this paper is as follows: The section 1; introduces the background of the study. An overview of the relevant 

literature is elaborated in Section 2; the materials and method are described in Section 3; Section 4 contains the 

discussion and result; and the conclusion is given in Section 5. 

Paper contribution: 

a) Examining the previously proposed literatures on cardiotocogram. 

b) Modelling of a cardiotocogram data using   Feedforward Neural Network algorithm 

c) Validation of the model FFNN with other existing models. 

 

2. RELATED WORKS 

Cardiotocography is mostly used in assessing the Fetal Heart Rate (FHR), and as such, several works have been 

carried out to optimize the use of cardiotocographs in combination with other techniques using both machine learning 

and deep learning models. The following literature presents the research works done by different authors. Mendis et al. 

(2023) carried out an extensive study on the range of computerized CTG analysis approaches to overcome the 

challenges of manual clinician interpretation. The author(s) presented an overview of current FHR and Uterine 

Contraction (UC) monitoring technologies. They took into account both public and private CTG datasets, as well as 

the steps involved in preprocessing these datasets. They further investigated classification algorithms such as Machine 

Learning (ML) classifiers (Deep Gaussian processes, logistic regression, random forest, support vector machine) and 

Deep learning classifiers (Long Short-Term Memory and Conventional Neural Network) used in the automation 

technique for fetal compromise detection. Alharbi et al. (2024) subsequently unstudied the implementation of ML and 

DL in addressing the challenges of fetal hypoxia using a cardiotocograph. The review provided guidance, especially 

for the obstetricians, on improving the accuracy of detecting suspicious fetal hypoxia more efficiently during fetal 

health monitoring. In the quest to proffer more solution as regards to the improvement of CTG in fetal health, 

Ricciardi et al. (2023) proposed a solution to the challenges of classifying suspected CTG recording using ML 

technique, thereby developing a machine-based labeling. The dataset used for this work consisted of 580 CTG signals 

for healthy fetuses from the 24th to 42nd week of gestation. A Support Vector Machine (SVM) was deployed for 

binary classification in order to differentiate between suspicious and normal CTG traces. The classification metrics 

disclosed the best accuracy of 92%, sensitivity of 92%, and specificity values of 90%. The authors further pointed out 

the importance of appropriate feature selection and dataset balancing in achieving an acceptable performance of the 

classifier. Asfew et al. (2023) focused on improving the classification performance of the CTGs by presenting three DL 

models for prediction of birth outcome using FHR traces recorded at the beginning of labour and for the time domain 

using a combination of 1D CNNs and LSTMs and a 2D CNN. These models were trained to classify newly born 

babies using the CTU-UHB dataset consisting of 51,449 births with 20 minutes of FHR recordings. The models were 

evaluated using Partial Area Under the Curve (PAUC) between 0–10% false-positive rate and sensitivity at 95% 

specificity. The 1D-CNN-LSTM parallel architecture outperformed the other models, achieving a PAUC of 0.20 and 

sensitivity of 20% at 95% specificity. Subsequently, Hirono et al. (2024) proposed the use of Doppler ultrasound 

(DUS) signals and binary classification using 1D-CNN in order to ascertain the fetal origin of the auto-correlated data 
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obtained from 425 cases while considering the Maternal Heart Rate (MHR) and the Fetal Heart Rate (HFR). The 

model was trained using the obstetrician-labeled data from the fetus and that of the mother. The proposed model was 

compared to a simple mathematical method; the best performance was achieved using the proposed model, which 

disclosed an Area Under the Curve (AUC) of 0.98, 97% accuracy, 82.3% precision, 86.9% recall, and an 84.5% F1-

score. Furthermore, Gude et al. (2022) presented a forecasting model using deep learning to predict FHR and UC in 

combination with the classification algorithm for predictive fetal monitoring. This hybrid algorithm was developed 

using random forest and support vector machines to predict 2 to 4 minutes into the future of the fetal state, while the 

FHR and the UC data of the patients are forecasted using a deep learning Long Short-Term Memory (LSTM) model. 

The classification algorithm disclosed 85% result accuracy in predicting fetal acidosis on features extracted from the 

cardiotocography data. The approach produced a model with the ability to ascertain the fetus condition, which can 

adequately guide the obstetricians in diagnosis, planning, and intervention. Kuzu et al. (2023) proposed a predictive 

approach based on ensemble learning for classification of fetal health into normal, suspicious, and pathology using a 

cardiotocography dataset of fetal movements and FHR acceleration from the Nonstress Test (NST). The proposed 

approach disclosed an accuracy above 99.5% on the test dataset. The observed experimental results disclosed that fetal 

health diagnoses can be made during NST using machine learning. Sahana et al. (2023) explore the use of a robust 

classification model to address the challenges of poorly interpreted fetal heart rate. The Czech Technical University 

and University Hospital of Brno (CTU-UHB) database consisting of 552 intrapartum records was collected using the 

OB Trace Vue System between 27th April and 6th August 2012. The duration of each record was 90 minutes. The use 

of machine learning classifiers such as SVM, Random Forest (RF), Multi-Layer-Perceptron (MLP), and bagging was 

deployed by the authors to classify the CTG. The model was evaluated and compared with the Area Under the 

Receiver Operating Characteristic Curve (ROC-AUC). The result revealed the AUC-ROC value as a high classifier. 

However, the SVM and RF demonstrated better performance using other parameters. While considering the suspicious 

cases, the SVM result was 97.4% and RF scored 98%, the sensitivity was 96.4%, and the specificity was 98%. In the 

second stage of labor, the SVM disclosed an accuracy of 90.6% and the RF score of 89.3%. Hence, according to the 

revealed results, the proposed model demonstrated its efficiency and can be incorporated into an automated decision 

support system. 

2.1 Research gap 

The traditional model such as rule-based, statistical and linear regression algorithms often performs poorly in 

capturing complex and nonlinear interactions between FHR and UC in CTG data. This study proposes the use of ANN 

based Feed forward Neural Network (FFNN) model which can adequately learn complex nonlinear mappings in CTG 

data features such as the FHR, UC, Maternal Heart Rate (MHR) etc. The FFNN model performs data classification 

which can effectively classify CTG data outcomes into normal, suspect and pathology. The FFNN has also 

demonstrated strength in noise and artefact handling associated with CTG data such as baseline drifts, or probe errors 

and noise signals) which can often mislead traditional algorithms. The FFNN model in combination with other data 

processing techniques such as filtering and normalization, when trained can adequately can handle such challenges. 

Thereby enhancing the accuracy of the CTG data during diagnoses and providing a good guide in decision- making for 

doctors. 

3.0 MATERIAL AND METHOD 

3.1 Data collection  

The fetal cardiotocography data used in this work was collected from Kaggle repository. The data consist of 2126 fetal 

cardiotocogram (CTGs) data with 42 number of features and subsequently divided into training, testing and evaluation 

data. The data are presented in table 1. 

Table 1: Data feature description  

Feature Data Format Description 

File-Name String Name of the CTG examination file 

Date Date Date of the examination 

B Integer Start instant of the recording 

E Integer End instant of the recording 

LBE Integer Baseline value assessed by a medical expert 
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LB Integer Baseline value assessed by SisPorto 

AC Integer Number of accelerations detected by SisPorto 

FM Integer Foetal movements detected by SisPorto 

UC Integer Uterine contractions detected by SisPorto 

ASTV Percentage 

(Float) 

Percentage of time with abnormal short-term variability detected by SisPorto 

mSTV Float Mean value of short-term variability detected by SisPorto 

ALTV Percentage 

(Float) 

Percentage of time with abnormal long-term variability detected by SisPorto 

mLTV Float Mean value of long-term variability detected by SisPorto 

DL Integer Number of light decelerations 

DS Integer Number of severe decelerations 

DP Integer Number of prolonged decelerations 

DR Integer Number of repetitive decelerations 

Width Integer Histogram width 

Min Integer Lowest frequency in the histogram 

Max Integer Highest frequency in the histogram 

Nmax Integer Number of histogram peaks 

Nzeros Integer Number of histogram zeros 

Mode Integer Mode of the histogram 

Mean Float Mean value of the histogram 

Median Float Median value of the histogram 

Variance Float Variance of the histogram 

Tendency Categorical (-1, 

0, 1) 

Histogram tendency: -1 for left asymmetric, 0 for symmetric, 1 for right 

asymmetric 

A Boolean Presence of calm sleep pattern 

B Boolean Presence of REM sleep pattern 

C Boolean Presence of calm vigilance 

D Boolean Presence of active vigilance 

SH Categorical (A, 

Susp) 

Shift pattern 

AD Boolean Accelerative/decelerative pattern indicating stress 

DE Boolean Decelerative pattern indicating vagal stimulation 

LD Boolean Largely decelerative pattern 

FS Boolean Flat-sinusoidal pattern, indicates a pathological state 

SUSP Boolean Suspect pattern 

CLASS Integer (1-10) Class code for patterns A to SUSP 

NSP Integer (1, 2, 3) Classification: 1 for Normal, 2 for Suspect, 3 for Pathologic 

3.2 Data processing 

Tocodynamometer sensors for UC and Doppler ultrasound for FHR were used in cardiotocogram (CTG) data 

collection while recording signals in real time during pregnancy and labor. The collected data underwent data 

processing through filtering using a high-pass filtering techniques to remove low-frequency noise especially in the UC 

signal and normalization using min-max normalization technique to handle recording inconsistencies in the FHR data. 

The heart rate variability, UC frequency, and acceleration or deceleration patterns were retrieved in order to ascertain 

the health of the fetus. The Feed Forward Neural Network (FFNN) algorithm was deployed after training for data 

classification into normal, suspect and pathology(distress patterns). These enhancements achieved in developing the 

FFNN model will aid clinicians in understanding the displayed data, thereby aid the clinicians in making well-

informed decision. 
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3.3 Methodology 

The methodology of this work began with data collection. CTG data were usually collected from the patient through 

the doppler ultrasound and tocodynamometer sensor, which contains primarily the FHR and the UC signals, saved in a 

Common Separated Values (CSV) file format. The data was processed by filtering for noise removal and feature 

normalization to ensure data consistency. The processed data was further apportioned in a ratio of 70:20:10 for 

training, testing and evaluation of the Feedforward Neural Network (FFNN) architecture in MATLAB R2022b 

environment while deploying the Levenberg-Marquardt technique. The FHR and UC classification accuracy of the 

proposed model was evaluated using Positive Predictive Value (PPV), False Dictation Rate (FDR), True Positive Rate 

(TPR), False Negative Result (FNR) and Receiver Operating Characteristic Curve (ROC)evaluation metrics. The 

validation of the proposed model was carried out using previously developed models of different authors.The FFNN 

modelcan be implemented within the clinical systems, assisting the medical practitioners in making informed decisions 

based on real-time CTG analysis. The block diagram of the model is presented in the figure 1 below. 

 
Figure 1: the block diagram of the FFNN model 

3.4 How the cardiotocogram machine works 

The cardiotocogram (CTG) machine uses two key sensors. The doppler ultrasound transducer sensor to measure the 

fetus's heart rate (FHR). This sensor uses sound waves to record the heartbeat and then convert it into an FHR in beats 

per minute. While the tocodynamometer sensors measure the pressure changes during contractions, which show their 

timing and severity. These signals are processed and displayed on the screen as continuous line graphs for both the 

FHR and the UC. The clinicians then analyze the various patterns, which include the variations in baseline heart rate 

and accelerations or decelerations and the contractions frequency. Thereby predicting possible spots of distress and 

prompting timely interventions during pregnancy and labor. The block diagram below illustrates the cardiotocogram 

machine key working modules. 

 
Figure: 2 block diagram of the cardiotocogram machine. 

1. Sensors/probe block: The cardiotocogram machine uses two sensors: the Doppler ultrasound transducer 

sensor, which detects the FHR, usually generated by the baby's heartbeats in the form of sound waves. While 

the second sensor, which is the tocodynamometer sensor, is used in detecting the uterine contractions, 

especially during labor. 

2. Signal processing: This consists of an amplifier and filter. The amplifier enhances the generated weak signal 

from the sensors, and the filter removes the noise from the signals, thereby making the FHR and UC signals 

clearer and more readable. 

3. Data processing signal analysis: In this block, the signals are examined to determine the intensity of 

contractions and the patterns of the FHR, such as the accelerations, decelerations and baseline heart rate. 
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4. Recording and Display Block: This section of the machine displays the real-time FHR and UC data on a 

screen, thereby aiding the clinicians in monitoring the mother and the baby's health. The paper recording also 

enables printing the CTG tracing data on thermal paper. 

5. Alert and alarm: This enables a timely intervention of the medical professionals in case of any abnormalities 

in the FHR or UC patterns during labor. The entire block works together in the machine to promote safe labor, 

hence ensuring the wellness of both mother and child during labor and consequently childbirth. 

3.5 Feed Forward Neural Network (FFNN) architecture 

The FFNN architecture is modelled by constructing a one-direction data flow that takes in data from the input and 

passes it onto the output through multiple layers, as illustrated in figure 2 below. The data moves across four hidden 

layers from the input to the output. These layers consist of four neurons each with the hyperbola activation function, 

which works with the bias in the hidden layer’s neurons. The weighted summation of the layers is computed starting 

from the input layer that represents the features. The SoftMax activation function is deployed to the output layer for 

the purpose of classification. The network detects the intricate patterns due to its non-linearity. By having a specific 

structured task, the end output layer can effectively carryout data classifications. FFNN errors such as prediction 

errors, FFNN iterative computing training errors, and modified weights can be minimized using backpropagation and 

enhanced control variables such as learning rate, number of neurons, and layers. 

 
Figure 3: FFNN architecture  

3.6 Mathematical model 

The FFNN was modeled using four layers with four neurons was trained for data classification of cardiotocogram 

(CTG) data. The input features were processed through each layer to produce the final classification of the output into 

normal, suspect, and pathology. The mathematical model was developed considering the following FFNN structure. 

Input layer: The FFNN consists of two input vectors, which pass onto the first hidden layers without computation. 

However, the CTG data features correspond to the number of the input features. The first hidden layer is expressed as 

shown in equation (1.0), followed by the tanh activation layer also given in equation (2). 

 𝑧(1) =  𝑊 [1]. 𝑥 +  𝑏[1]        (1.0) 

  𝑎1 = 𝑡𝑎𝑛ℎ (𝑧[1])         (2.0) 

Where: 𝑎(1)is the activation vector of the first hidden layer; The activation function equation using hyperbola 𝑡𝑎𝑛ℎ  

for the nth layer is given as equation 3.0: 

 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 −𝑒−𝑥

𝑒𝑥 +𝑒−𝑥         (3.0) 

Hidden layers: The structure of the hidden layers consist of four hidden layers with 4 neurons each, as shown in 

equation (3) and the 𝑡𝑎𝑛ℎ activation function given in equation (4).  
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For hidden layers 2 to 4, 𝑛 = 2,3,4 

 𝑧𝑛 =  𝑊 [𝑛]. 𝑎(𝑛−1) +  𝑏[𝑛]        (4.0) 

𝑎𝑛 = 𝑡𝑎𝑛ℎ (𝑧[𝑛])                                                 (5.0) 

Output layer: This layer involves three outputs with the SoftMax activation function which performs the classification 

function is given as: 

(𝑍) =  
𝑒2𝑗

∑ 𝑒2𝑘𝑘
            (6.0) 

The output layer is given in equation (7) as: 

𝑧𝑐 =  𝑊 [𝑐]. 𝑎[𝑐−1] +  𝑏[𝑐]                 (7.0) 

Where c is denoted as the matrix vector of the output layer 

Output activation layer: 

𝑎(𝑐) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑐))           (8.0) 

Hence, the single input 𝑦 for the entire model is expressed as follows: 

𝑦 = 𝑓(𝑊 [5]. 𝑡𝑎𝑛ℎ(𝑊[4]. 𝑡𝑎𝑛ℎ(𝑊[3]. 𝑡𝑎𝑛ℎ(𝑊 [2]. 𝑡𝑎𝑛ℎ(𝑊[1]. 𝑥 +  𝑏[1]) + 𝑏[2]) +  𝑏[3])  +  𝑏[4]) + 𝑏[5]) (9.0) 

Notation: 

𝑥 ∈  ℝ4𝑥𝑛  is the input vector matrix 

𝑊 (𝑖) 𝑎𝑛𝑑 𝑏(𝑖) are the weight matrix and bias vector for the 𝑛𝑡ℎ layers. 

𝑧(𝑖)  is the pre-activation vector for the 𝑛𝑡ℎ layer. 

𝑎(𝑛) is the post-activation vector for the 𝑛𝑡ℎ hidden layer. 

3.7 System Integration  

The system integration for this model was developed using two flow charts. The flow chart of the CTG FFNN model 

presented in figure 4. The flow chart of the proposed CTG FFNN model 

 
Figure 4: The flow chart of the CTG FFNN model 
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The CTG FFNN was modeled starting from the data collection. The dataset was divided into three sets, namely the 

training data, test data and validation in the ratio of 70;20;10. The Input stage receives the training data and transfers it  

to the data processing stage, here the received data is categorized into baseline FHR, and contraction frequency. The 

categorized data is further deployed to the Feedforward Neural Network (FFNN) for training using Levenberg-

Marquardt technique. The training stage of the flow chart is where the FFNN algorithm is being trained and passed to 

the decision stage to check the generated result of the FFNN algorithm. The training decision stage passes the result to 

the generated result stage for testing and validation using the test and validation data. The result convergence stage 

ensures the improved accuracy of the FFNN generated model. The generated model class output the data classified by 

the model .The flow chart of the CTG machine merged with the proposed FFNN model is presented in figure 5. 

 

Figure 5: flow chart of the cardiotocogram machine merged with the FFNN model. 

The above flow chart of the CTG machine merged with the FFNN model working process is presented in Fig 5. The 

system flow starts from receiving data signals from two inputs, namely the Doppler ultrasound sensor for FHR and the 

tocodynamometer sensor for UC. The sensors transfer the signals to the amplifiers, which magnify the sensors' signals 

and pass them to the filter to further process the signal by carrying out data processing using high pass filtering 

technique for noise removal and min-max technique normalization for data normalization. The signal (processed data) 

was further deployed into the FFNN model, which performs the data classification. The processing classification block 

input subsequently classifies the data into normal, suspicious, and pathology as the final output after evaluations in the 

decision block. The stop block indicates the termination of the machine process. 

3.8 Evaluation Matrices  

The model was evaluated using several matrixes, namely positive predictive value (PPV), False Dictation Rate (FDR), 

True Positive Rate (TPR), False Negative Result (FNR) and Receiver Operating Characteristic Curve (ROC). 

The Positive Predictive Value (PPV): presents the proportion of true positive results among all positive predictions of 

the model. The high PV indicates when the system predicts a positive result. The PPV is important in ensuring that 

cases presented as abnormal truly require medical attention. The formula is given as  
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𝑃𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
        (10.0) 

The False Dictation rate (FDR) presents the false positive results in the positive predictions, representing the error rate 

of positive diagnoses. A lower FDR result is preferred in the proposed CTG model to minimize needless medical 

interferences and pressure on the patients. 

𝐹𝐷𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)
          (11.0) 

 

The True Positive Rate (TPR) presents the proportion of actual positive cases that are correctly identified by the 

model. It measures how effectively the model detects true cases of pathologic states. A high TPR ensures that most 

conditions requiring intervention are identified, reducing the risk of missing critical diagnoses. 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
        (12.0) 

The False Negative Result (FNR) in the model indicates the proportion of the actual positive cases that are incorrectly 

identified as negative by the model. The FNR close to zero is desirable for CTG because it ensures that very few cases 

requiring medical intervention are overlooked. A high FNR indicates a significant risk of missed diagnoses, potentially 

endangering patient safety. 

𝐹𝑁𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)
        (13.0) 

The Receiver Operating Characteristic (ROC) curve is the graphical representation of a model’s performance across 

different thresholds. It plots the true positive rate (sensitivity) against the false positive rate (1-specificity). The ROC 

curve helps clinicians and researchers understand the trade-off between sensitivity and specificity. Adjusting the 

decision threshold based on the ROC curve can optimize CTG system performance according to clinical needs.  

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅 (𝐹𝑃𝑅) 𝑑(𝐹𝑃𝑅)
1

0
         (14.0) 

        4.0 Discussion and Result 

The proposed CTG model was trained using the CTG dataset divided in the ratio of 70:20:10 for training, testing, and 

validation data. The training was carried out using the Levenberg-Marquardt technique with the Tanh activation 

function. The hyperparameters consist of fully connected 4 layers, with size 10 and 1000 iteration limits. The training 

time lasted for 72.216 sec, disclosing a result accuracy of 90.3%. The results were evaluated for performance using the 

five following matrix: PPV, FDR, TPR, FNR, and ROC.  

 4.1 Positive Predictive Value (PPV) and False Dictation Rate (FDR) 

 The confusion matrix analysis of the PPV also known as precision and FDR for classifying the CTG data is presented 

in figure 6 below. The PPV depicts the true positive prediction of the given classes of the CTG data, While FDR 

presents the incorrect prediction in the data. The PPV matrix shows the true classes on the y-axis (True Class 1,2 and 

3), and the x-axis shows the predicted classes (Predicted Class 1, 2, and 3).The class 1 in the confusion matrix of the 

true class 1 disclosed 95.3% correct prediction, while class 2 and 3 shows 23.0% and 9.3% are the miskenly predicted 

class respectively, indicating that PPV of  class 1 model is correct 95.3% of the time while the FDR which is 4.7%, 

indicates a low rate of false positives when predicting class 1. The class 2 of the true class displayed 70.6% correctly 

predicted class, while class 1 and 3 shows wrongly assigned classes with 3.7% and 13.7% respectively, indicating that 

the PPV of class 2 is correct 70.6% of the time, while the FDR shows 29.4%, which is a higher rate of false positives. 

The class 3 of the true class 3 disclosed a 77.0% correct prediction while class1 and 2 were 1.0% and 6.4% 

misclassified respectively. This indicates that the PPV is correct 77.0% of the time and the FDR is 23.0% indicating 

that 23% of class 3 is wrong. 

The over view of the result shows a strong precision of 95.3% (high PPV) for class 1 with a relatively low FDR of 

4.7%, indicating a higher stability when predicting class 1. The class 2 disclosed a lower PPV(70.6%) and higher FDR 

(29.4%), this shows a relatively unreliablity in precision. Then finally, class 3 is in between good precision (77.0%) 

and a moderate FDR of (23.0%). 

      4.1 True Positive Rate (TPR and True Negative Rate) 

The confusion matrix (left part) and the TPR and FNR (right part) for the classification model are presented in figure 

7. In the confusion matrix, the Y-axis shows the true class (the input data), while the x-axis indicates the predicted 
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classes in the model outputs. The true class 1, 94.9% of class 1, was correctly predicted, while classes 2 and 3 were 

4.1% misclassified, respectively. In class 2 true class, class 2 shows 70.8% correct prediction, while classes 1 and 3 

were misclassified by 20.7% and 8.5%, respectively. Then, in the class 3 true class, 80.1% of the class 3 were correctly 

predicted, while class 1 was 9.1% misclassified and 10.8% misclassified in class 2. 

The TPR and TNR values (left part of the matrix). In the true class 1, of the class 1 cases, the model disclosed TPR of 

94.9% correct identification and 5.1% FNR of missed predicted. In class 2, the model accurately identifies 70.8% and 

29.2% FNR of the true class 2 cases. While in class 3 of the true class, the model correctly identifies 80.1% of TPR 

and FNR 19.9% missed cases in the true class 3. 

4.2 Receiver Operating Characteristic Curve (ROC). 

The ROC analysis in figure 7 below disclosed that the model has a strong classification performance for all three 

classes. Class 1 (blue) with an AUC of 0.9504, revealing the model's excellent ability to classify class 1 from other 

classes. The AUC in class 2 disclosed 0.9301, indicating a robust performance but slightly less than class 1, while class 

3 (yellow) with an AUC of 0.9386 disclosed that the model identified a high accuracy, though it is slightly lower than 

class 1 and above class 2. The three classes show an AUC above 0.93, indicating a strong classification performance of 

the model all through classes 1 to 3. The ROC curves aid in visualizing the operating threshold, thereby allowing a 

closer examination of the balance between TPR and FPR.  

 

   
Figure 6: PPV and FDR analysis    Figure 7: TPR and TNR analysis. 

Table 2: Result summary for the entire 3 classes table 

 

True class PPV FDR TPR FNR AUC-ROC 

Class 1 95.3% 4.7% 94.9% 5.1% 0.9504 

Class 2 70.6% 29.4% 70.8% 29.2% 0.9301 

Class 3 77.0% 23.0% 80.1% 19.9% 0.9386 
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Figure 8: ROC analysis 

Table 3:  Evaluation metrics table of the Proposed Model 

Metric Class 1  

(Normal) 

Class2 

 (Suspect) 

Class 3 (Pathological) Ava of the 3 

Classes 

Positive Predictive Value (PPV) / 

Precision 

95.3%   70.6% 77.0% 80.9% 

False Discovery Rate (FDR)/ 1-Precision 4.7% 29.4% 23.0% 19% 

True Positive Rate (TPR) / Sensitivity 94.9 70.8% 80.1% 81.9% 

False Positive Rate (TPR) / 1-Specificity 5.1% 29.2% 19.9% 18% 

AUC_ROC 0.9504 0.9301 0.9386 0.9397 

The performance evaluation of the model across the three classes is shown in Table 3. The presented results in class 1 

established an outstanding performance in identifying normal cases with a PPV of 95.3% and a TPR of 94.9%. The 

AUC-ROC of 0.9504 in class 1 reflects the model’s capability in discriminating between normal and other classes, 

while the FDR disclosed a low rate of 4.7% and an FNR of 5.1%. In class 2 (Suspect), the performance was observed 

to be moderate with a PPV of 70.6% and a TPR of 70.8%. The AUC-ROC disclosed 93.01% suggesting the model’s 

effectiveness in separating suspect cases from other classes, while FDR of 29.4, 4.7%, and an FNR of 29.2% indicated 

the challenges of accurately identifying these cases. The model finally disclosed well performs for class 3 

(pathological) cases with a PPV of 77.0% and a TPR of 80.1%. The AUC-ROC of 0.9386 indicates strong 

performance, though slightly below class 1 but better than class 2, while the FDR of 23.05 and an FNR of 19.9 

disclosed a moderated error rate. The result of the model demonstrated an excellent ability in classifying normal 

performance for normal cases (Class 1), good performance for pathological cases (Class 3), and moderate performance 

for suspect cases (Class 2). The AUC-ROC also disclosed high values (above 0.93) across all classes, suggesting 

strong overall model reliability. The proposed model can effectively improve the CTG machine’s diagnostics, 

especially for normal and pathological cases, while suspect cases may require further model refinement. 

Table 4: Comparative analysis table of recent works by different authors 

Author(s)   Techniques 

 

Result 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

Ricciardi et al., (2023) ML (machine-based labeling)  92 92 
 

90 NA 

Gude et al., (2022) NN 69.85 58.33 83.33 69.67 

 RF 66.67 50.00 83.33 60.89 

SVM 72.22 66.66 85.71 67.77 
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Asfew et al., (2023) Spectrogram 2D CNN NA 95 13 1 

Spectrogram 2D CNNs + 1D-CNN-LSTM NA 95 14 11 

Scalogram 2D CNN NA 95 14 13 

Scalogram 2D CNNs + 1D-CNN-LSTM NA 95 15 17 

Hirono et al., (2024) 1D-CNN 97 NA NA 82.3 

Sahana et al., (2023) MLP 92.7 92.7 96.2 92.8 

RF 96.7 96.4 98.4 96.8 

 SVM 96.4 96.4 98.3 96.6 

Bagging 93.6 93.6 96.8 93.6 

Okeke et al., (2022) ANN 98.34    

Our model FFNN 

 

90.3 81.9 82 80.9 

After training and evaluation of the FFNN model using several evaluation matrices, the model was further compared 

with recent works of the different authors for the purpose of validation, considering the accuracy, sensitivity, 

specificity, and precision results of their different works. The overall result shows that the FFNN model can compete 

with other models. 

5.0 Conclusion 

Over the years, the need for a reliable model that improved the classification efficiency of CTG machines has 

continued to dominate research attention in the scientific community. This work has successfully presented ANN based 

feed-forward neural network classification model and integrated it into a CTG machine for improved monitoring and 

classification of FHR. The model was designed using CTG data, applied to train FFNN, which further classifies the 

output data into Normal, Suspicious, and Pathology classes. To evaluate the model, several metrics were applied, with 

an overall result of 90.3% accuracy, 81.9% sensitivity, 82% specificity, and 80.9% precision. Finally, the FFN model 

demonstrated a convincing overall performance in classifying the provided CTG data, especially for Class 1 and Class 

3, by having high precision, sensitivity, and AUR-ROC values. The class's outstanding performance of 95.3% 

precision, 94.9% sensitivity, and 0.9504 AUC-ROC demonstrated the model's reliability to successfully identify the 

class with minimal errors. The model performed well for class 3, with slightly lower precision (77%) and sensitivity 

(80.1%), as compared to class 1. However, the proposed model revealed a moderated result for class 2, by disclosing a 

lower precision (70.6%) and sensitivity (70.8%), with the error rate (FDR: 29.4%, FNR: 29.2%). Finally, the FFNN 

proposed model disclosed a viable potential in classifying the CTG data. Notwithstanding, there is a need to optimize 

and improve the performance of class 2 without compromising the established results of class 1 and class 3. For 

further improvement on the classification model especially for suspect class 2 in this study, it is recommended to adopt 

strategies such as rebalancing datasets, refining feature selection, or hyperparameter tuning modification to ensure an 

optimized classification result. However, the developed model is reliable and effective in carrying out medical 

diagnostics in cardiotocography and can be incorporated into a CTG machine. 
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