

Volume 1, Issue VI, June 2022, pp. 28-42

Submitted 06/5/2022

Final peer reviewed 11/5/2022

Online Publication 16/6/2022

Available Online at http://www.ijortacs.com

IMPROVING CONGESTION CONTROL IN A PACKET SWITCHED NETWORK USING FAIR QUEUING TECHNIQUE

¹Uzochukwu M., ²Prof. Onoh G.N.

¹uzochukwumuonaka@gmail.com

¹²Department of Electrical Electronics Engineering, Enugu State University of Science and Technology

Abstract

This work presents improving congestion control in a packet switched network using fair queuing technique. The aim is to reduced delay experienced in the characterized WLAN used for the study. This was achieved using the necessary physical and structural models to design the wireless network under study and then improve the router performance using fair queue technique. The fair queue algorithm was developed using structural method, pseudopodia and implemented with Matlab. The result shows that the new system was able to effectively manage congestion when simulated and achieved throughput percentage of 89% and latency performance of 76ms.

Keywords: Packet Switched, Congestion, Wireless Network, Throughput, Latency, Matlab

I. INTRODUCTION

Communication systems of any kind, either analogue or digital have a limit to the amount of data traffic that it can transmit at a given time. In situations whereby the network demand is more than the required capacity, it results to congestion of the network, which means that the latency in data communication of the system is impaired, or challenged (Bryan and Patrick, 2011). Therefore, there is a great need to prevent this in public and private data network entities to facilitate the operation of trade, industries, transport, network, provision and planning within the

despoliation of the global enterprise (Davarian, 2014).

Researchers has given network congestion avoidance, monitoring and control focus over the past decade, especially in the field of information and communication technology. When the congestion in a network is not properly managed, there is a threat to the efficiency of the network utilization which can lead to collapse of the network. Therefore, the management of congestion in both wired and wireless network is a means of enhancing the network performance for adapting to the traffic load without adversely affecting the user's usability (Francis, 2007).

This paper is focused on the improving the avoidance of network congestion in a packet switched network, most especially the situation whereby many users are interconnected on the same network and transmitting various packets at the same time. To solve this problem fair queuing technique has been proposed to improve the congestion avoidance and management in a network. This technique is preferred to other technique because it usually identifies various packets according to their sizes and then allows the smaller bits to be transmitted first before higher bits. This way latency is reduced and congestion is controlled.

AUTHOR	TITLE	WORK DONE	RESEARCH GAP
Luigi et al.,	Large-Scale Network	The work develops scalable	The author leverage
(2017)	Utility Maximization	algorithmic tools that are	suite of modified
	(NUM): Countering	capable of providing efficient	gradient methods
	Exponential Growth	solutions in time which is	known as "mirror
	with	dimension-free,	descent", and derive a
			scalable and efficient
			algorithm for the
			NUM problem based
			on gradient
			exponentiation
Ioannis et al.,	Intelligent routing and	They rely on the interaction	propose a new class of
(2008)	bandwidth allocation	of autonomous agents who	routing algorithms
	in wireless networks	communicate with each other	based on principles of
		through the environment (a	biological swarms,
		phenomenon known as	which have the
		stigmergy)	potential to address
			these problems in an
			autonomous and
			intelligent fashion
Haris (2017)	Wireless Networks	The work discusses the rise of	The work provides
	with Artificial	network intelligence and then,	readers with
	Intelligence: Design,	we introduce a brief overview	motivation and
	Challenges and	of AI with machine learning	general methodology

Table 1: LITERATURE REVIEW

Corresponding Author Tel: +234810 647 11428

International Journal of Real-Time Application and Computing Systems (IJORTACS)

	•			
	Opportunities.	(ML) and their relationship to	for adoption of AI in	
	Belgium.	self-organization designs	the context of next-	
			generation networks	
Yongmin et	Distributed control	The work investigates various	The work presents the	
al (2017)	and optimization of	bibliographies relating to	ant colony and	
	wireless networks	wireless network control	guffman coding	
			techniques for the	
			optimization of	
			wireless network	
Zia et al.	Multi-cell admission	The work studied and	The work addresses	
(2015)	control for UMTS	addresses improving mobility	mobility management	
		management through	using inter and intra	
		multiplexing intra and inter	technique to reduce	
		mobility to minimize the	signal traffic	
		signal traffic		

II. METHODOLOGY

The methodology adopted in this paper is the process model which consists of selfdefining equations and computer aided software engineering method. The materials used for data collection and implementation of the method in this paper includes; routers, laptop, network switch and User Equipment (UE).

a. Characterization

Giganet packet switch network at digital dreams Nigeria Ltd was characterized in this paper. This characterization involves studying the throughput performance and effect of congestion between the nodes during data transmission of various packet data over the network. The characterization involves the collection of real-time data in three network nodes of the network, a network simulator and monitoring device were used as shown in figure 1.

Figure 1: The Network Setup

b. Data Collection

This paper considered the testbed in figure 1 for data collection. It used three nodes for transmitting various packet types in the network; however, the one transmitting FTP signal was monitored closely and used for the characterization. Table 2 shows the data collected from the monitoring device for the FTP transmitter node;

Packet	Throughput	Latency	Packet Loss	Result for network	
sent (kb)	(kb)	(ms)	(kb)	performance	
25	23	20.0	2	Throughput and latency ok	
50	46	65.0	4	Throughput and latency ok	
75	70	72.0	5	Throughput and latency ok	
100	93	81.0	7	Throughput and latency ok	
125	118	113.0	7	Throughput ok, latency ok	
150	127	141.0	23	Throughput ok, latency ok	
175	132	145.0	43	Throughput ok, latency ok	
200	150	145.0	50	Throughput ok, latency ok	
225	170	146.0	55	Throughput ok, latency ok	
250	190	148.0	60	Throughput fair, latency ok	
275	167	222.0	108	Throughput poor, latency	
				poor	
300	147	230.0	157	Throughput poor, latency	
				poor	
325	159	265.0	166	Throughput poor, latency	
				poor	
350	177	272.0	173	Throughput poor, latency	
				poor	
375	189	281.0	186	Throughput poor, latency	

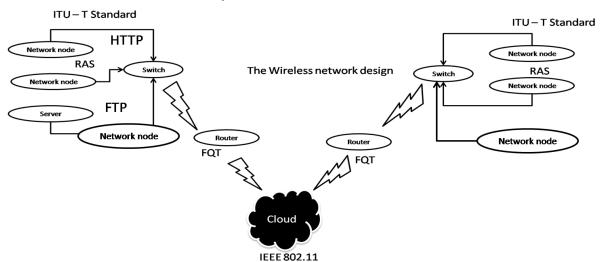
TABLE2: CHARACTERIZED RESULT FOR FTP DATA

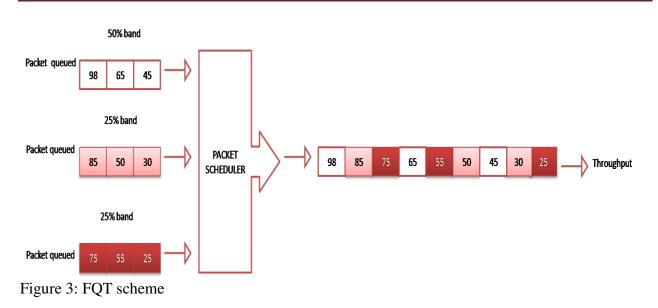
Corresponding Author Tel: +234810 647 11428

				poor		
400	265	313.0	195	Throughput	poor,	latency
				poor		

c. System Proposal

The wireless network proposed in this system uses the IEEE 802.11 methodology for the communication of wireless network structures with the necessary network components like the network nodes, switches, routers, servers with the international telecommunication union standard specification. The structure of this network is presented in figure 2




Figure 2: the proposed communication network design

III. SYSTEM MODELLING

This section presents the technique, algorithm, flowchart and models adopted in the actualization of improving the congestion avoidance system. The fair queuing technique has been adopted in this work for highly optimized and effective system in congestion avoidance.

a. Development of the Fair Queuing Technique (FQT)

The FQT is a scheduling algorithm which is used in a network scheduler for congestion management. The algorithm is designed to achieve fairness when limited resources bandwidth is shared. It presents a fair resultant bandwidth allocation according to the required weights assigned for the packet. The FQT scheme is demonstrated in figure 3

b. Pseudocode and Flowchart of the Algorithm

- 1. Start
- 2. Identify incoming packet
- 3. Identify packet size
- 4. Classify packet according to sizes
- 5. Schedule throughput from the least size
- 6. Allow delay of 45ms for other packets
- 7. Stop

The flowchart of the Fair queuing technique

is shown in figure 4

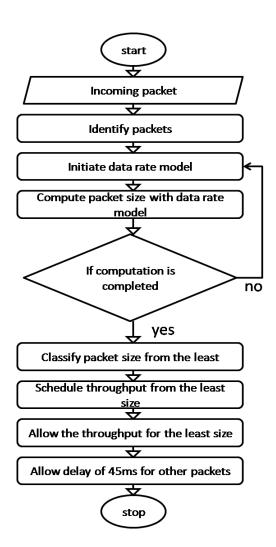


Figure 4: Fair Queuing Flowchart

c. Data Rate Model

The data rate model was developed considering the signal to noise ratio; the bandwidth size and the time slot for dividing the packets. The model is presented as;

$$R_{u,t=\alpha W \log 2(1+SNR_{u,t})}$$
(1)

Where W is the bandwidth, α is the fraction of bandwidth employed for the packet data transmission, SNR is signal to noise ratio at user u and time slot of t.

e. Network Congestion Model

channel. The model of the network under congestion is designed considering the number of nodes transmitting packet at a given time, the signal to noise ration identified as (SNR), and the propagation path loss (pl), presented using the equation below;

$$q = 3[SNR]^{\Lambda} \frac{1}{pl}$$
(3)

f. Latency

This latency is always due to propagation delay, source delay, network delay and

IV. IMPLEMENTATION

The technique was implemented as a written script in MATLAB development environment. The script was guided with mathematical models developed and the pseudocode of the fair queue algorithm also developed using signal processing toolbox, communication toolbox. ITU-T client standard and IEEE 802.11 methodology for system implementation of a packet switch network. Equation (2) was used to implement three network nodes. The nodes transmit FTP and HTTP data over network

d. Throughput Model

The throughout is presented using the range between the total packet sent per given time and the rate delivered or rejected as shown in the model below (Wang, 2009).

Throughput
$$= \frac{VS_q}{T_{tx,q} - T_{rx,q}}$$
 (2)

Where VS_q is the amount of packet to be transmitted by user qth, $T_{rx,q}$ is the time for service request and $T_{tx,q}$ is the time taken to transmit each packet.

Network congestion is produced when the users transmit in the same frequency destination delay. During this process, some of the energy associated with the transmitted packet is lost in the form of noise. Packet end-to-end delay can be measured as the difference between packet arrival and packet start time

$$\frac{\text{Packet delay}}{\sum i \text{ (packet arrivali-packet starti)}}{n}$$
(4)

Where packet arrivali is the time when packet "i" reaches the destination and packet starti is the time when packet "i" leaves the source. "n" is the total number of packets.

while the other node was used at the other end of the communication process to complete the end-to-end communication protocol. From the nodes, packet signals were transmitted based on the packet flow model in equation (1) while the traffic formed due to the communication process within the network is presented with the model in equation (4) and controlled using the proposed fair queuing algorithm. The network performance was evaluated considering throughput presented with

equation (3) and latency equation in equation

V. RESULT AND DISCUSSION

This section presents the outcome of the simulation performed with the packet switch network using fair queuing technique in MATLAB simulation tool. A comparative (4) and will be discussed in the next section.

review of the technique with the characterized network was also presented later in this section.

TABLE 3: SIMULATION PARAMETERS COLLECTED FROM THE TESTBED

Parameters	Values
Number of nodes	3
Maximum packet size	400kb
Monitoring system IP	172.22.3.99/25
Simulation time interval	0.002ms
Average noise level	-164 dBm/Hz
Modulation type	16QAM
The Resolution bandwidth	10 kHz
Middle frequency (f1)	203.25 MHz
Middle frequency (f2)	583.25 MHz
Frequency	224.25 MHz
Power	1.5 W
Cable Type	RJ45
Impedance	20 ohms
Gateway	172.22.3.1
LAN IP	192.168.10.0/24
Duplexing scheme	Time division multiplexing

Table 3 presents the parameters used to perform the simulation in MATLAB.

TABLE 4: RESULTS OF NETWORK WITH FQT

Packet sent (kb)	Throughput	Latency (ms)	Packet Loss (kb)
	(kb)		
25	23	70	2
50	46	75	4
75	70	72	5
100	93	71	7
125	118	73	7
150	127	71	23

Corresponding Author Tel: +234810 647 11428

Uzochukwu and Onoh (2022)

International Journal of Real-Time Application and Computing Systems (IJORTACS)

175	132	75	43	
200	150	75	50	
225	175	76	55	
250	190	78	60	
275	209	72	66	
300	233	80	67	
325	248	85	77	
350	271	82	79	
375	290	81	85	
400	311	83	89	

The result in Table 4 shows the performance of the packet switched network when the fair queuing technique has been deployed on it.

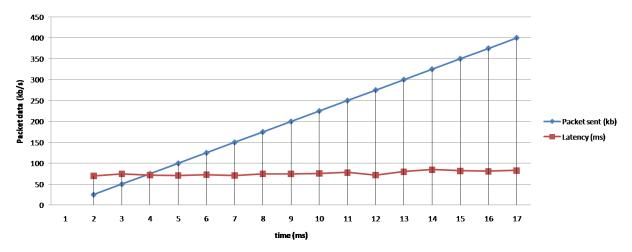


Figure 5: latency performance with FQT

The figure 5 presented the latency performance of network as shown above, from the result it was observed that the average latency performance is 75ms. The overall quality of throughput performance on the network is presented below

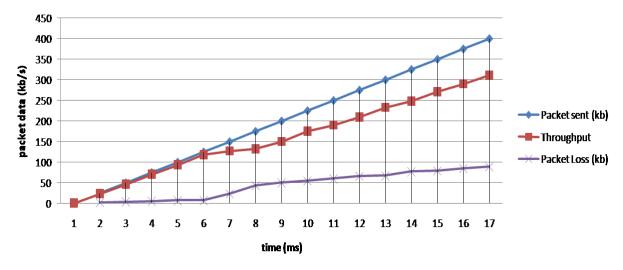


Figure 6: quality of service

The figure 6 presented the quality of throughput performance on the network, from the result it was observed that the

packet set experienced negligible loss rate with an average throughput percentage of 89%.

TABLE 5: COMPARATIVE ANALYSIS

Packet sent	01	New Latency	Characterized	Characterized
(kb/s)	(kb)	(ms)	Throughput	Latency (ms)
			(kb)	
25.0	23	70	23	20.0
50.0	46	75	46	65.0
75.0	70	72	70	72.0
100.0	93	71	93	81.0
125.0	118	73	118	113.0
150.0	127	71	127	141.0
175.0	132	75	132	145.0
200.0	150	75	150	145.0
225.0	175	76	170	146.0
250.0	190	78	190	148.0
275.0	209	72	167	222.0
300.0	233	80	147	230.0
325.0	248	85	159	265.0
350.0	271	82	177	272.0
375.0	290	81	189	281.0
400.0	311	83	165	313.0

The result in Table 5 presented the comparative performance of the network

when tested with the proposed technique and without the technique. These results were analyzed as shown below;

International Journal of Real-Time Application and Computing Systems (IJORTACS)

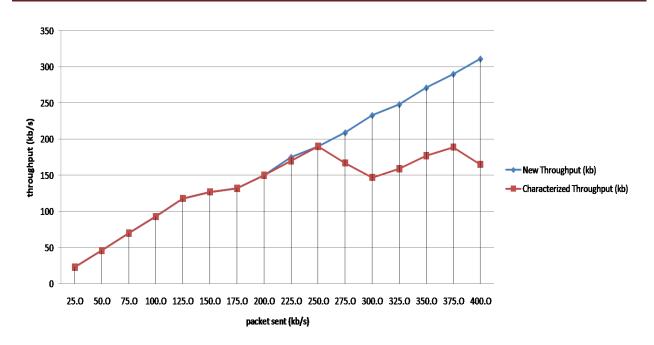
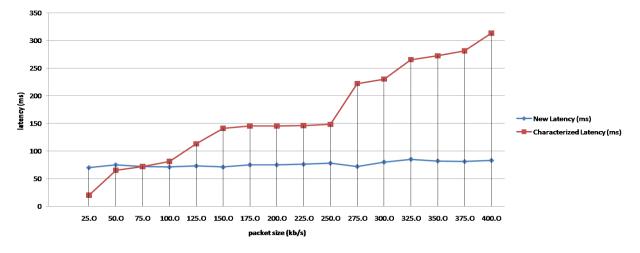
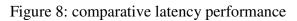




Figure 7: comparative throughput performance

The figure 7 presented a comparative analysis of the throughput performance of the new packet switched network and the characterize network. From the result the percentage increase in throughput performance is 20.9%. The next result presented the comparative throughput performance as shown below;

From the result the percentage increase in latency performance is 54% which is the increased in the speed of transmission in the packet switched network when improved with FQT.

VI. CONCLUSION

This work presents a congestion control management algorithm for packet switched network. This was developed using fair queuing techniques and deployed at the digital dream packet switched network. The result showed that the latency and throughput performance of the network was improved to the effectiveness of the algorithm. Throughput percentage improvement achieved was 20% as against 65% of the characterized network.

CONTRIBUTION TO KNOWLEDGE

• Fair Que algorithm was developed for congestion control in packet switched network

REFERENCES

- Bryan, T., and Patrick.F., (2011) "A Practical Approach to the Reduction of Pseudorange Multipath Errors in a L1 GPS Receiver" IJRIAS; Vol 3; Issue 3; pp. 411-412; available at: ".http://tech.info/documents/ paper1_IB2_mrf-jun34.
- Davarian, F. (2014).Earth-satellite propagation research. Communications Magazine, IEEE, 32(4), 74-79. From:http://ieeexplore.ieee.org.
- Francis, C. (2007).Uses of the New Types of Wireless Technologies for istribution and Substation Automation. Xanthus Publishing; pp. 511-592
- Haris G (2017), Wireless Networks with Artificial Intelligence: Design, Challenges and Opportunities. Belgium. Pp. 211- 301
- Ioannis N. Arindam K, Mohammed E. and Robert J (2008); Intelligent routing and bandwidth allocation in wireless networks" [J] IJRIAS; 3[2]; pp. 733-752
- Luigi Vigneri, Georgios Paschos, and Panayotis Mertikopoulos (2017); Large-Scale Network Utility Maximization: Countering Exponential

Growth with Exponentiated Gradients; pp. 811-892

- Wang C., Li B., Sohraby K., Daneshmand
 M. & Hu Y. (2006) Priority-based
 Congestion Control in Wireless
 Sensor Networks. In: IEEE
 international conference on sensor
 networks, s. pp.22 31.
- Yongmin Zhang; Wenchao Meng, Heng Zhang, Preetha Thulasiraman and H. Luan (2017) Distributed control and optimization of wireless networks; pp. 901-955
- Zia Yongmin ;Wenchao Meng, Heng Zhang, Preetha Thulasiraman and H. Luan (2015) Multi-cell admission control for UMTS.IEEE standard 802.11 Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) specifications; pp. 309-328

Corresponding Author Tel: +234810 647 11428