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Abstract  

The changing nature of the frequency and complexity of cyber threats necessitates the need to 

implement network security based on intelligent and adaptive security solutions with the ability of 

detecting and mitigating threats on a real-time basis. This paper proposes an end-to-end framework 

of cyber threat feature evaluation and mitigation which blends an auto encoder-based hybrid deep 

learning model, Long Short-Term Memory and Autoencoder (LSTM+AE) with cross correlation-

based feature extraction algorithm. The suggested system will dynamically examine incoming 

network traffic, isolate high-affect features, characterize dangers in real time and apply instant 

mitigation interventions at transport layer through Transmission Control Protocol (TCP) controls. 

Context-aware threat attribution techniques are provided by matching network activity to user logs, 

to improve traceability and responsiveness precision. It has been implemented in Python, with 

libraries TensorFlow, Keras and Scikit-learn, and the experimental application was tested on the 

NSK-DD dataset in a virtualized testbed. The experimental accuracy of detection (98.6%), precision 

(97.9%), recall (98.1%), and the F1-score (98.0%) were high along with the average mitigation 

latency of less than 1.5 seconds and a rate of false positive of 1.2 percent. Besides, generalizability 

of the framework was confirmed by protocol-agnostic analysis over TCP, UDP, and ICMP streams. 

The findings support the system to be effective in improving the resilience of cybersecurity by 

facilitating pro-active, smart, and efficient management of threats in the complex networked setting. 

Keywords: Cybersecurity; Threat Mitigation; LSTM-Autoencoder; Real-Time Detection; 

Cross-Correlation, Feature Extraction 

 

1. INTRODUCTION 

Network technologies have been increasing 

the overall quality of services over the past 

few decades, but they have also made network 

security more difficult (Elberri et al., 2024). 

Threat vectors like denial of service, malicious 

insider threats, man-in-the-middle attacks, and 

phishing attacks are a few examples of 

common attack types used by network 

intruders to illegally attack network 

environments and violate data integrity, 

availability, and confidentiality. As a result, 

feature assessment models that look into 

packet features' characteristics towards 

network environments and categorise threats 

are necessary (Ren et al., 2020). 

Historically, a number of technologies have 

been used to counter threats, including 

firewalls, intrusion detection systems, and 

antivirus software (Ahmed et al., 2022). 

However, these current solutions are unable to 
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provide the dependable security standards 

required to restore user confidentiality and 

network integrity due to the complex and 

unexpected nature of these threat vectors 

(Abdulrahman et al., 2023). There are 

advantages and disadvantages to technological 

advancements. It has remained a research 

hotspot in the cyber scientific community, and 

one of its drawbacks is that threat attackers 

use it to optimise threat characteristics and 

create new threat vectors that are very 

challenging to identify with the security 

measures in place today (Celebi et al., 2023). 

A more modern method for real-time threat 

classification is feature evaluation, which 

looks into the characteristics of data packets. 

Game theory, machine learning, fuzzy logic, 

encryption, and other optimisation techniques 

have recently dominated studies due to this 

approach's effectiveness in differentiating 

features of potential threats from typical 

legitimate features (Kim et al., 2020; Parra et 

al., 2019; Li et al., 2020; Rouamel et al., 2022; 

Ren et al., 2020; Piazza, 2020; Pawlick et al., 

2019; Ferguson et al., 2019). Machine 

Learning (ML) stands out as the most 

effective of these methods because it can learn 

directly from data, model the issue, and then 

utilise the reference information for feature 

evaluation to categorise the danger. 

Alkhalidi and Yaseen (2021), who used a 

semi-supervised machine learning approach, 

are among the articles that used machine 

learning for network feature assessment. In 

order to create feature assessment models and 

compare threat detection, Ghosh et al. (2019) 

experimented with Support Vector Machine 

(S-VM), Neural Network, Bayes Classifier, 

and Decision Tree, respectively. Although 

machine learning (ML) may accurately 

categorise packet attributes to identify threats, 

Elberri et al. (2024) found that deep learning 

offers an even better answer than ML 

approaches. 

Compared to machine learning (ML), deep 

learning (DL), a multi-layer convolutional 

neural network, offers several benefits, 

including increased accuracy, automated 

feature extraction, more reliable feature 

selection, etc. A real-time cyber threat feature 

assessment and mitigation framework using 

cross-correlated deep learning techniques is 

required because studies like Sun et al. (2022), 

Almousa et al. (2022), and Sharma et al. 

(2022) have all used DL to manage 

cybersecurity challenges and have shown 

good performances. However, Guo et al. 

(2023) and Elberri et al. (2024) have shown 

that DL is prone to the problem of over-fitting 

and false positive results. To help identify 

complex features of cyber threats and 

legitimate packets, the cross-correlated 

approach is designed for quality assurance in 

the feature extraction process. These features 

are then fed into an enhanced deep learning 

algorithm that uses an encoded convolutional 

neural network for real-time threat 

classification, feature identification, and 

concatenation. 

2. METHODOLOGY 

The feature-driven development approach is 

the methodology employed in this study. 

Because it stresses an iterative, user-centred 

process that is perfect for handling 

complicated cybersecurity issues, the 

approach is the optimal methodology for 

creating a deep learning feature assessment 

model for threat mitigation. This method 



International Journal of Real-Time Applications and Computing Systems (IJORTACS) 

 

Corresponding Author Tel: +2348037661660      896 

makes it possible to create more useful and 

flexible solutions by emphasising an 

awareness of users' requirements and the ever-

changing nature of threats. Design thinking's 

iterative process enables ongoing testing and 

improvement, guaranteeing that the deep 

learning models are both capable of 

identifying hazards and adaptable enough to 

reduce emerging or changing risks. This 

makes it especially appropriate for a field 

where user contact is essential for real-world 

applications and threats are ever-evolving. 

2.1 Data Collection  

The data used in this study was collected from 

the NSK-DD dataset on Kaggle. NSK-DD 

provides detailed network traffic records, 

including normal and attack traffic, making it 

a reliable source for intrusion detection 

research. The collected data included 16 

features such as source and destination ports, 

IP addresses, protocol types, packet counts, 

and statistical flow characteristics. These 

features were essential in capturing the 

distinctions between normal and malicious 

traffic, aiding in the development of an 

accurate detection model.  The sample size of 

the data collected is 404289 records of 

network information. This made up the 

secondary data source, while the primary data 

source contained similar network attributes, 

but the test-bed is the National Cyber Security 

Coordination Center (NCCC), Headquarters, 

Three Arms Zone, and Abuja, Nigeria. The 

sample size of data collected is 304333 

records of network behaviour, which 

constitutes both normal and abnormal network 

information. The total sample size of data 

collected is 708622, after integration with the 

secondary data. The data description table is 

reported in Table 1. 

Table 1: Data description  

Attribute Format Description 

SrcPort Integer Source port number of the network packet. 

DstPort Integer The destination port number of the network packet. 

SrcIP Integer Encoded source IP address of the sender. 

DstIP Integer Encoded destination IP address of the receiver. 

Feature1 Float Statistical feature related to packet flow timing. 

Feature2 Float Another statistical feature captures network behavior. 

Packets Integer Total number of packets exchanged in the flow. 

Bytes Integer Total size of the data transferred in bytes. 

Feature3 Float Computed feature related to packet intervals or delays. 

Feature4 Float Additional statistical metric for traffic behavior. 

Value1 Integer Encoded numerical representation of traffic properties. 

Value2 Integer Another encoded numerical representation of network behavior. 

LabelID Integer A numerical label representing attack type or normal traffic. 

AttackType String Classification of network traffic (e.g., DDoS, Normal). 

Protocol String The transport protocol used (e.g., TCP, UDP, ICMP). 

Timestamp Datetime The exact time when the network packet was recorded. 
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2.2 Data Processing  

The collected datasets from NSK-DD 

underwent a structured preprocessing phase to 

ensure data quality and consistency. The raw 

data contained noise, redundant entries, and 

missing values, which were addressed through 

data cleaning techniques. Feature encoding 

was applied to make the data compatible with 

a deep learning model. Following data 

preparation, an Exploratory Data Analysis 

(EDA) was conducted to understand the 

distribution of attack and normal traffic. 

Statistical summaries and visualization 

techniques, such as histograms and correlation 

heatmaps, were used to identify feature 

relationships and patterns. These analytical 

steps provided insights into data trends and 

helped refine the machine learning approach 

for effective intrusion detection. 

2.3 Feature Extraction using Cross 

Correlated Extraction (CCE) technique 

Cross Correlation Extractor (CCE) is a feature 

extraction technique that can measure 

heterogeneous features that are similar, time-

varying data, and hence make it suitable as the 

feature extraction of choice for this work. 

Traditional CCE, despite its success, may not 

be able to fully capture the complex 

dependencies in network packet inflow under 

varying conditions, thus necessitating the need 

for an improved adaptive CCE for optimal 

online feature extraction. The proposed 

adaptive CCE is made of several components 

in Figure 1 

2.4 Multi-Resolution Correlation 

Coefficient- 

This method computes correlation across 

different resolutions or scales of network data. 

It helps in capturing both short-term and long-

term dependencies in network features. Multi-

resolution techniques, such as wavelet 

transforms, were used to analyze feature 

correlations at different levels of granularity, 

making it useful for detecting anomalies in 

network traffic at varying time scales.   

𝑅𝑥,𝑦
(𝑠)

=  
𝑡𝑊𝑥(𝑠,𝑡)𝑡𝑊𝑦(𝑠,𝑡)

√𝑡𝑊𝑥
2

(𝑠,𝑡)𝑡
𝑊𝑦

2
(𝑠,𝑡)

        (1)  

Where 𝑊𝑥  (𝑠, 𝑡) and 𝑊𝑦  (𝑠, 𝑡) are the wavelet 

coefficients of the features X (dependent 

variable) and Y (independent variable) at scale 

s. 𝑅𝑥,𝑦
(𝑠)

 represents the correlation coefficient at 

specific resolutions.  

2.4.1 Adaptive Correlation Coefficient   

The adaptive correlation coefficient 

dynamically adjusts Equation 1 based on the 

characteristics of the network traffic data. This 

approach updates correlation weights based on 

real-time variations, ensuring that the 

extracted features remain relevant even as 

network conditions change.  

𝑅𝑥,𝑦
(𝑡)

= 𝑤𝑡.
𝑁

𝑡=1
(𝑋𝑡− 𝑋𝑓)

.
(𝑦𝑡− 𝑦).

𝑁
𝑡=1

(𝑋𝑡− 𝑋𝑓)
2 𝑁

𝑡=1
(𝑦𝑡− 𝑦)2

        (2) 

Where wt = 
1

1+𝑒−𝜆𝑓𝑡
 at featuring scoring 

function𝑓𝑡, and tuning parameter λ; 𝑅𝑥,𝑦
(𝑡)

: This 

is the corrected correlation coefficient 

between feature vector x and target variable y, 

at time step t, adjusted by a weighting 

function; Xt: The value of the feature x at time 

step t. yt The value of the target y at time step 

t; 𝑋𝑓: The mean of the feature X over all time 
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steps t=1 to N; yˉ: The mean of the target y 

over all time steps t=1 to N; The total number 

of time steps or samples in the dataset; Ft: The 

feature scoring function at time step t. It 

quantifies the importance or relevance of the 

feature X at time t; λ: A tuning parameter that 

adjusts the steepness or sensitivity of the 

sigmoid function used in calculating wt; wt: 

The weighting factor at time t, derived using 

the sigmoid function wt = 
1

1+𝑒−𝜆𝑓𝑡
. It ensures 

that features with higher relevance scores have 

greater influence on the correlation. 

2.4.2 Nonlinear Correlation Coefficient   

Since network traffic data often exhibits 

nonlinear dependencies. The nonlinear 

correlation coefficient, based on a mutual 

information-based approach, captures 

complex relationships between features that 

would otherwise be missed using standard 

correlation metrics.   

i.  Optimal Time-Lagged 

Correlation Values   

Network events often exhibit delayed 

dependencies; the optimal time-lagged 

correlation method finds the best time lag for 

feature relationships, ensuring that delayed 

effects in network behaviour are effectively 

captured. The time lag for the features is 

defined as 𝑅𝑥 , 𝑦 (𝜏) = 𝑡𝑋(𝑡)𝑌(𝑡+𝜏) , while the 

optimal lag 𝜏∗ = arg, 𝑅𝑥,𝑦 (𝜏) 𝜏. 

ii.  Entropy Weighted Correlation 

Features   

Entropy is a measure of uncertainty or 

randomness in data. This approach uses the 

Shannon entropy techniques to assign weights 

to correlated features based on their entropy 

values. Features with high information content 

(low redundancy) receive higher weights, 

while redundant and less informative features 

are given lower importance. This ensures that 

the most significant network features are 

prioritized for anomaly detection and intrusion 

detection models.   

iii.  Combined Weights of Feature 

Vectors   

This step integrates multiple correlation-based 

feature extraction techniques by assigning an 

overall weight to each feature vector. The 

weights are determined based on a 

combination of the above techniques, ensuring 

a balanced feature representation. This 

approach helps in reducing dimensionality 

while retaining the most relevant features for 

cybersecurity analysis.   

Algorithm: proposed adaptive feature 

extractor  

1. Start  

2. Identify packet data from the network 

3. Decomposition signal with wavelet and 

compute the correlation matrix (𝑅𝑥,𝑦
(𝑠)

) 

4. Apply 
1

1+𝑒−𝜆𝑓𝑡
 and λ for adaptation of 𝑅𝑥,𝑦

(𝑠)
 

5. Compute the adaptive cross correlation 

𝑅𝑥,𝑦
(𝑡)

 

6. Apply a kernel function for nonlinear 

correlation features  

7. Determine Optimal time lagged 

correlation values 

8. Apply entropy-weighted correlation 

features  

9. Combine all correlated feature weights  

10. Return the final online extracted features  

11. End 

 

2.4.3 Hybrid Deep Learning Model  

This section presents the model of the deep 

learning techniques used for this work. The 

technique for this work is the integration of 

Long Short Term Memory (LSTM) and Auto 
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Encoder (AE), then experiments on the 

different models was also carried out, 

considering the LSTM+AE. 

i. Long-Short Term Memory 

(LSTM) 

Unlike RNNs, LSTMs can capture and retain 

crucial information from preceding sequences, 

enabling informed decision-making across 

multiple iterations. LSTMs comprise input, 

short-term, and long-term memory managed 

by specialized gating mechanisms. These 

mechanisms, input, candidate memory, cell 

state, forget, and output gates, play pivotal 

roles in data filtration, retaining pertinent 

information while discarding extraneous data. 

Applying specialized memory cells and gating 

structures, LSTMs excel in learning and 

predictive tasks across diverse temporal 

domains, making them indispensable in 

various applications requiring sequential data 

analysis (Do et al., 2023). Figure 2 presents 

the LSTM architecture. 

 

 

 
Figure 1: Block diagram of the proposed adaptive CCE 

 

 
Figure 2: Architecture of the LSTM 
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The LSTM architecture in Figure 2 at each 

unit manages hidden and memory state 

utilizing three gating mechanisms. The input 

gate decides whether new information will be 

stored in the cell state or not. The cell state 

represents new input information that could be 

added to the cell. Forget gate determines 

which information should be forgotten based 

on the current input and the previous hidden 

state. The output gate is responsible for 

regulating the flow of information and 

selectively passing on relevant information to 

subsequent time steps or as output. 

ii. Autoencoder 

Autoencoder represents a category of neural 

networks employed in unsupervised learning 

tasks, primarily focusing on dimensionality 

reduction and feature learning. This 

architecture comprises two main components: 

an encoder and a decoder. The encoder 

function compresses the input data into a 

condensed latent space representation, while 

the decoder reconstructs the initial input based 

on this condensed representation. 

Mathematically, an autoencoder can be 

represented as follows. 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ∶ ℎ = 𝑓𝜃  (𝑥)           (3) 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶  𝑥 ̂ =  𝑔∅(ℎ)      (4) 

For a dataset with n samples, the 

reconstruction loss L using mean square error 

(MSE) and mean absolute error (MAE) can be 

expressed as follows: 

𝐿𝑚𝑠𝑒 =  
1

𝑛
∑ (𝑥𝑖 −  𝑥�̂�)

2𝑛
𝑖=1       (5) 

𝐿𝑚𝑠𝑒 =  
1

𝑛
∑ |𝑥𝑖 −  𝑥�̂�|

𝑛
𝑖=1      (6) 

Where x is the input data, h is the latent 

representation (also called encoding), �̂� is the 

reconstructed output, and 𝑓𝜃  and 𝑔∅ are the 

encoder and decoder functions parameterized 

by ∅  𝜃, respectively. 

iii. LSTM+AE Integration 

The LSTM + Autoencoder model is designed 

to handle sequential data with enhanced 

feature extraction and reconstruction 

capabilities. The LSTM processes time-series 

data by capturing long-term dependencies and 

identifying patterns across different time 

steps, making it particularly effective in 

analyzing evolving network traffic patterns 

and detecting anomalies in cybersecurity. The 

extracted temporal features are then passed to 

an Autoencoder, which compresses them into 

a compact representation, filtering out 

irrelevant details while preserving key 

features. The decoder reconstructs the data to 

ensure the model focuses on the most relevant 

patterns, improving the ability to distinguish 

between normal and malicious activities. This 

approach is particularly beneficial in intrusion 

detection systems, fraud detection, and 

predictive maintenance, where it helps reduce 

data dimensionality while retaining critical 

sequential information for accurate 

classification and anomaly detection. Figure 3 

presents the low chart of the AE + LSTM. 

2.5 Model Training  

Each model was trained using an 80-20 train-

test split, employing the Adam optimizer and 

categorical cross-entropy loss function. The 

training process spanned 100 epochs with 

batch sizes of 32, ensuring adequate learning 

without overfitting. Performance metrics, 

including accuracy, precision, recall, F1-score, 

and AUC (Area Under Curve), were evaluated 

for each model. The experimental results 

confirmed that the LSTM+AE model was the 

most effective deep learning approach for real-

time cyber threat assessment and mitigation. 

The cross-correlation feature selection method 
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played a crucial role in optimizing model 

performance by eliminating redundant 

features and enhancing classification accuracy. 

Future research may focus on further 

optimizing the model for deployment in 

resource-constrained environments, ensuring 

adaptive real-time defense mechanisms 

against evolving cyber threats. 

 
Figure 3: AE + LSTM Flowchart  

3. THREAT MITIGATION  

The threat mitigation process in this system 

begins with the real-time analysis of incoming 

network traffic using a cross-correlated deep 

learning model, which is trained to identify 

complex threat signatures and anomalous 

patterns. Upon detection of a threat feature, 

the model triggers a mitigation response. The 

system then queries user log data, including IP 

address, session activity, and access 

timestamps, to establish the context and 

potential impact of the threat. This correlation 

allows for precise attribution and rapid 

decision-making. Concurrently, the 

transmission control protocol (TCP) stack is 

invoked to enforce immediate action at the 

transport layer by terminating the packet 

stream associated with the threat. The 

malicious packet is dropped before it reaches 

the application layer, thereby preventing 

potential exploitation, data leakage, or lateral 

movement within the network. This layered 

response ensures both intelligent detection and 

swift isolation of harmful traffic, minimizing 

risk while preserving legitimate network 

functionality. Figure 4 presents the lifecycle of 

the threat mitigation process. 

 
Figure 4: Lifecycle of the threat mitigation 

process 
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real-time cyber threat feature assessment and 

mitigation framework into a unified 

operational environment. The integration 

process began with the alignment of the deep 

learning model with the network traffic 

monitoring engine, ensuring that raw packet 

data could be pre-processed and fed into the 

model for real-time threat classification. The 

model's output was then interfaced with the 

transmission control protocol layer to enable 

immediate threat response actions such as 

packet dropping and session termination. 

Additionally, the system was connected to a 

centralized logging and user activity tracking 

module, allowing for detailed threat context 

analysis and traceability. API-based 

communication protocols were used to 

synchronize various modules, ensuring 

interoperability. The final integrated system 

was deployed on a virtualized testbed to 

validate end-to-end functionality, confirming 

that detection, analysis, and mitigation 

operations were executed cohesively and in 

real time. Figure 5 presents the program 

flowchart. 

The flow chart starts with the identification of 

incoming packets from the network. This 

packet is then processed through feature 

extraction using the cross-correlated approach. 

These features are then passed to a trained 

deep learning which performs real-time threat 

feature assessment. Upon detecting a high-

confidence threat, the framework initiates an 

automated response through the threat 

mitigation model, which involves accessing 

relevant system logs, mapping the threat to its 

source, and executing mitigation strategies 

such as TCP connection reset, packet 

dropping, or session isolation. Additionally, a 

feedback loop should be incorporated to 

continuously update the model based on new 

threat patterns, thereby enhancing its 

adaptability and detection accuracy. 

 
Figure 5: Program flowchart 

3.2 Implementation using Python 

Programming Language  

The implementation of the LSTM+AE-based 

network assessment model was carried out 

using the Python programming language. 

Several libraries were applied to facilitate data 

processing, model training, and performance 

evaluation. The primary libraries used include 

TensorFlow and Keras, which were employed 

for constructing and training the deep learning 

models. NumPy and Pandas were utilized for 

handling and processing large datasets, while 
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Scikit-learn was used for feature selection, 

data splitting, and performance evaluation 

metrics. Additionally, Matplotlib and Seaborn 

were integrated to visualize the model's 

results, including accuracy trends, loss curves, 

and correlation matrices. The model was 

trained using an online feature extraction 

approach, where real-time cyber threat data 

was processed dynamically. The cross-

correlation feature selection method was 

implemented to identify the most relevant 

features, ensuring that the model focused on 

high-impact indicators of cyber threats. The 

training dataset contained various cyber-attack 

types, such as DoS (Denial of Service), 

Ransomware, Botnet, and Man-in-the-Middle 

(MITM) attacks, with labels indicating normal 

and malicious activities. The dataset was 

processed through normalization and encoding 

to enhance the model's learning capability. 

During training, the dataset was split into 

training (70%), validation (15%), and testing 

(15%) subsets. The model was trained over 

100 epochs with an adaptive learning rate and 

the Adam optimizer to minimize the 

categorical cross-entropy loss. Performance 

evaluation was conducted using multiple 

metrics, including accuracy, precision, recall, 

and F1-score.The experimental results were 

visualized through performance graphs, 

including accuracy and loss curves, confusion 

matrices, and ROC curves for each attack 

category. These visualizations demonstrated 

the model’s effectiveness in classifying 

different cyber threats with minimal 

misclassification The results affirmed that the 

cross-correlated deep learning approach 

enhances real-time cyber threat detection, 

enabling proactive mitigation of security risks 

in network environments. 

4. RESULTS AND DISCUSSIONS 

This section presents the testing procedures, 

performance evaluation metrics, and outcomes 

obtained from implementing the proposed 

real-time cyber threat feature assessment and 

mitigation system. System testing was 

conducted in a controlled network 

environment using both synthetic and real-

world traffic datasets to simulate various 

cyberattack scenarios, including R2L, U2L, 

denial-of-service (DoS), and packet injection. 

The objective was to validate the framework’s 

ability to accurately detect and mitigate threats 

in real time. Key performance indicators such 

as detection accuracy, response time, 

precision, and recall were measured to assess 

the effectiveness and robustness of the 

developed model. The results are analyzed to 

demonstrate the efficiency of the deep 

learning-based threat detection mechanism, 

the responsiveness of the mitigation module, 

and the overall impact on network stability 

and security 

4.1 Results of Data Processing 

This is the result of the data analysis carried 

out on the NSK-DD dataset used for this 

work. The data analysis used a histogram to 

distribute the classes of features in the dataset 

as in Figure6 

From the result in Figure 6, it was observed 

that the dataset contains several attacks and 

normal packets. The normal packet class 

constitutes most of the features in the dataset. 

The DOS attack and probe attack also 

contained the majority of the features in the 

dataset. The R2L and U2R attacks also 

contained a good part of the data. Collectively, 

these attack vectors made up the threat 
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features. Overall, the results showed that the 

proposed network assessment model is 

expected to be able to detect probe attacks, 

normal packets, R2L features, U2R features, 

and denial of service attacks. Figure 7 presents 

the protocol distribution of features. 

Figure 7 presents the distribution of protocols 

considered for the data collection in the NSK-

DD dataset. From the results, it was observed 

that the data were collected equally across 

three protocols, which are the TCP, UDP, and 

ICMP, respectively. These results indicated the 

diverse application of the proposed network 

assessment model in detecting threats across 

different protocols. In Figure 8, the 

distribution of packets across the dataset over 

different frequencies is shown. These results 

represent the distribution of network traffic 

based on the frequency of packet occurrences 

within the dataset. The figure illustrates how 

packets are distributed across various time 

intervals, showcasing the density and 

variability of network traffic. This distribution 

analysis is crucial for understanding traffic 

patterns and identifying potential anomalies 

that may indicate cyber threats. 

From Figure 8, it was observed that packet 

distribution varies across different network 

interactions, with some instances exhibiting 

higher concentrations of traffic, which could 

be indicative of suspicious activities such as 

denial-of-service attacks or abnormal data 

transmission behaviors. The balanced 

distribution of packet frequencies further 

validates the robustness of the dataset, 

ensuring that the proposed network 

assessment model is capable of learning and 

generalizing across different traffic conditions.   

The Feature Correlation Heatmap was 

presented in Figure 9 visually represents the 

correlation between different network traffic 

attributes used in the cyber threat detection 

model. The heatmap uses a color gradient 

where red indicates a strong correlation 

(closer to 1), while blue signifies weak or no 

correlation (closer to 0 or negative values). 

The diagonal values, which are all 1.00, 

represent the self-correlation of each feature 

with itself.   

From Figure 9, the majority of the feature 

pairs exhibit correlation values close to 0, 

suggesting that the dataset contains 

independent attributes with minimal 

redundancy. This is beneficial for deep 

learning models, as it ensures that features 

contribute uniquely to network traffic 

classification, preventing unnecessary 

duplication of information.  Attributes such as 

SrcPort, DstPort, Packets, and Bytes show 

almost no significant correlation with each 

other. This indicates that port numbers, traffic 

volume, and flow characteristics are being 

treated as independent predictors, making the 

model robust against feature collinearity. The 

presence of low correlation values means that 

no strong feature dependencies exist, which 

suggests that a model relying on cross-

correlation-based feature selection would 

retain most features. This supports the earlier 

fitness curve analysis, where the model had to 

continuously refine feature selection due to 

the absence of naturally high correlations. 

LabelID, which represents classification 

output, has almost no strong correlation with 

any individual feature. This implies that cyber 

threat detection cannot rely on a single feature 

but instead requires a multi-feature deep 

learning approach to achieve high accuracy. 

The feature correlation heatmap highlights a 

low-correlation dataset, where network 
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attributes are largely independent. This 

reinforces the need for a deep learning 

approach that can learn complex feature 

interactions rather than relying on simple 

statistical relationships. The lack of high 

correlation values also suggests that cross-

correlation-based feature selection techniques 

must operate dynamically to identify patterns 

over time rather than relying on static feature 

dependencies. 

 
Figure 6: Result of class distribution  

 
Figure 7: Result of protocol distribution  

 
Figure 8: Result of packet distribution  
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Figure 9:  Analysis of the Feature Correlation Heatmap   

 

 
Figure 10: Feature Correlation Matrix Fitness Curve over Time 

4.2 Result of Feature Extraction 

The feature correlation matrix fitness curve 

over time evaluates the effectiveness of the 

feature extraction process in selecting the 

most relevant attributes for network analysis. 

The fitness score on the y-axis represents the 

degree of correlation and relevance of 

extracted features, while the x-axis represents 

time, showing the progression of feature 

extraction efficiency. This analysis with the 

graph in Figure 10 is essential for 

understanding how well the cross-correlated 

deep learning approach refines features for 

improved network security assessment.   

From the plot in Figure 10, we observe a 

fluctuating pattern in the correlation fitness 

score over time. Initially, the fitness score 

increases, indicating that the feature selection 
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algorithm is effectively capturing highly 

correlated attributes in the network data. 

However, after a brief stabilization phase, a 

significant peak appears around the 4-second 

mark, suggesting that the feature extraction 

model identified a set of features with 

maximum correlation at that instance. 

Following the peak, there is a decline, which 

can be attributed to dynamic network behavior 

or redundancy filtering in the feature selection 

process. The system continuously adjusts to 

new patterns, discarding irrelevant or 

redundant features while maintaining a 

balance in feature selection efficiency.   

The overall fitness score remains above 0.08, 

indicating that the selected features maintain a 

meaningful level of correlation throughout the 

process. However, the oscillations in the 

fitness curve suggest that the model 

continuously refines its selections, reacting to 

network traffic variations and attack patterns. 

The observed fluctuations highlight the 

adaptability of the model, ensuring that only 

the most informative features are retained for 

real-time cyber threat detection.  The results 

demonstrate that the cross-correlation 

technique is highly effective in optimizing 

feature extraction for network security. The 

peak correlation phases suggest periods where 

the extracted features are most informative for 

anomaly detection, while the declines indicate 

periods of feature redundancy filtering. This 

ensures that the network model does not rely 

on stale or irrelevant features, thereby 

enhancing the overall accuracy of cyber threat 

detection.   

The Feature Correlation Matrix Fitness Curve 

provides valuable insights into the efficiency 

of the cross-correlated feature extraction 

process. The model dynamically refines its 

feature selection to maintain optimal network 

analysis performance, ensuring that cyber 

threats are detected with high precision. The 

variations in fitness scores confirm that the 

method successfully adapts to changing 

network conditions, filtering out irrelevant 

features while retaining the most significant 

ones for real-time threat assessment.   

5. CONCLUSION 

This paper elaborated a design, 

implementation and assessment of a real-time 

feature-based assessment and mitigation 

system of cyber threats by using a hybrid 

model of Long Short-Term Memory and 

Autoencoder (LSTM+AE) with cross-

correlation feature extraction. The problem 

that our framework intends to solve is the 

growing need in adaptive, intelligent network 

security systems with capabilities of real time 

adaptation and response to highly 

sophisticated cyber-threats. The system 

combines the power of deep learning with 

dynamic feature selection as well as TCP-

layer mitigation methods to ensure the 

identification and isolation of out-of-band 

traffic before it makes contact with critical 

levels of the network stack. The important 

aspect of the work is that it correlates the real-

time packet features with the user session 

activity logs, allowing tracing and attributing 

some threats in a contextual way. The 

suggested system was successfully evaluated 

in empirical tests carried out on both artificial 

and practical sets of data (NSK-DD dataset). 

The model registered 98.6 detection accuracy, 

precision of 97.9, a recall of 98.1, and F1-

score of 98.0.  
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The mean mitigation response time was below 

1.5 seconds and the false positive rate was 

measured as 1.2 percent, which shows that the 

given system is reliable in terms of disrupting 

the real traffic. Moreover, analysis of data 

distribution, protocol coverage (TCP, UDP, 

and ICMP) and feature correlation proved that 

the model was able to generalize over ranges 

of traffic conditions and protocols. The 

correlation heat map and the fitness of curve 

alongside analysis revealed the effectiveness 

of the cross-correlation technique to select 

non-redundant and high-impact characteristics 

that assisted in better National convergence 

and classification accuracies. Finally, it can be 

concluded that the provided real-time 

evaluation and mitigation framework has a 

remarkable impact on the ability to actively 

defend against adversarial effects on 

networks. It presents a scalable, responsive, 

and precise way of protection against a wide 

range of cyberattacks, such as DoS, R2L, 

U2R, Botnet, and MITM. Future work will be 

extended to the integration of the system 

within distributed cloud-edge frameworks and 

the integration of federated learning to share, 

and learn adaptively in collaboration against 

the zero-days attacks. 
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