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Abstract
This study presents the development and analysis of a new block hybrid method for the direct

solution of second-order initial value problems (IVVPs) of ordinary differential equations (ODEs).
The method is constructed to improve accuracy and stability in solving highly stiff and oscillatory
systems that frequently arise in science and engineering applications. The theoretical analysis
establishes the consistency, zero-stability, and convergence of the proposed scheme. To demonstrate
its efficiency, the method is applied to a set of real-life problems and selected highly stiff test
equations of the second order. Numerical results are compared with existing methods. The findings
reveal that the new method provides smaller error magnitudes and better error control than its
counterparts, particularly in stiff regimes where conventional techniques often fail. This confirms the
robustness and reliability of the proposed method for solving second-order I\VPs.

Keywords: Block hybrid method; second-order ODEs; initial value problems; stiff systems;

numerical analysis; stability; convergence.

1. INTRODUCTION

Mathematical modeling is now widely used to explain processes in biology, physics, and
medicine. It has shown great value in studying areas like dynamical systems, body temperature
regulation, and simple harmonic motion. As highlighted by Sabo et al. (2021a) and Elazzouzi et
al. (2019), these models have advanced knowledge in both mathematics and the biosciences. The
use of mathematical tools in such fields has also encouraged new ways of thinking and stronger
collaboration across disciplines. In particular, studies of dynamic and thermal processes have
benefited greatly, as mathematics helps provide clearer insights and more accurate predictions
(Kubuye& Omar, 2015a; Sabo et al. 2021b).
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This research is concerned with addressing initial value problems (IVVPs) involving second-order
ordinary differential equations (ODESs), expressed in the general form:

yU) = F(LY. YD) V() = Yo, V() = Yo teltyt] (1.1)
Where t, represents initial value/point, Yy, denotes the solution at time t,, f remains

continuous over the integration interval. We operate under the assumption that equation (1.1)
adheres to the existence and uniqueness theorem of differential equations. Furthermore, we

presume that solutions to equations akin to (1.1) remain bounded. It's crucial to clarify that a
solution Y1) to equation (1.1) is deemed bounded if,

sup|y(t)] < o
teR (1.2)

The numerical approximation of equations such as (1.1) has attracted considerable attention from
scholars, as discussed in the works of Kyagya et al. (2021), Kubuye and Omar (2015b), Adeyeye
and Omar (2017), and Skwame et al. (2019).

Studies have demonstrated that solving an equation such as (1.1) in its original form is often

more effective than transforming it into a system of first-order ordinary differential equations, as
emphasized by Kwari et al. (2023). This understanding has motivated many researchers to
develop direct methods that address equation (1.1) without the need for such reductions. A wide
range of approaches for directly solving equation (1.1) have been reported in the literature.
Noteworthy contributions include those by Adeniran and Ogundare (2015), Omole and
Ogunware (2018), Kwanamu et al. (2021), Donald et al. (2021), Ayinde et al. (2023), and Ishaq
et al. (2024). Additional significant works include Aloko et al. (2024), Adewale and Sabo (2024),
as well as Sabo et al. (2024). Further efforts have been presented by Raymond et al. (2018),
Ibrahim (2017), and Kamo et al. (2018). Collectively, these studies highlight the growing
recognition and progress in the development of direct techniques for efficiently solving second-

order ordinary differential equations.

2 COMPUTATIONAL BLOCK MATHEMATICAL FORMULATIONS

An approximate solution to a power series polynomial of the for

y(t)= o;t’ (2.1)
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is considered as a basis function for the direct solution of the second initial value problems of the form
(1.1). Wheret e [a, b], thea's are real unknown parameters to be determined and u + Vv is the sum of the

number of interpolation and collocation points. differentiating (2.1) twice, yield

u+v-1

y(t)= 2 i(i-Dat 22)

L U s th ULt UL 0, U] y L
2 2 2 2 2 2 2 2 el
1 toa t§+1 t:+1 t:+1 tr5|+1 tr?+1 t’ 1 t§+1 t:+1 fa. ] y 2
"*E 0 n+2
0 0 2 et 12t 20 30t' 42t° 56t° 72t || & f, (2.3)
0 o 2 6, 12, 20, 30, 42°, S6t°, 72, |2 fn%
0 0 2 6t , 12t*, 20t°, 30t*, 42t°, 56t°, 72", % f
n+= n+= n+= n+= n+= n+= n+= a4 _ n+—
o o0 2 6t, 1a°, 20t°, 30t', 42°, 56t°, 72t |la | |2
0 o0 2 Gtml 12tn2+l 20tn3+l 30t:+l 42t:’+£ 56t:’+£ 72t:+7 :6 fm,
0 o0 2 6t 12t? . 20t* . 30t* . 42t° . 56t° . 72t’ Na f
n2 ez S SV Al S0, .2 || B ™3
3 3 3 3 3 3 3 f
0 0 2 6t , 12t>, 20t*°, 30t*, 42t°, 56t°, 72", L3 ] ned
n+— n;Z n;Z n;Z n‘:Z n{:z n;z fnﬂ
0 0 2 et, 123, 20t3, 30t}, 42t3, B56t°, 721, Lo

using Gaussian elimination method, (2.3) is solved for the a;'s. The values of the a;'s obtained are then

substituted into (1.1), after some manipulations, this gives a continuous hybrid linear multistep method of

the form,;
L 111123
- 2 - 24
y(t)_al(t)y 1+a1(t)yn+l+h Zﬂj(t)fm-j_'_ﬂv,(t)fn+vi 'Vi_oiiiililiiili ( )
5 T o 6 43234
the coefficient a;’al’ﬂo:ﬂyﬂyﬂy ﬂyﬂg:ﬁgvﬂl are given by;
2 6 4 3 2 3 4
a, =2-2t
2
o, =2t—-1
5, = 41 1867 1., 113, 427, 3367 . 1876, 113, 132, .
13440 40320 2 36 36 120 45 3 7
p, =54, 8485 594, 9072 3132, 21816, 11664, 2592,
1 175 35 5 25 5 35 35 35
5 = 2 26, 512, 11392 , 21248, 14080, 171008 , 31488, 1024 ,
1721 175 15 45 25 9 105 35 5
B, —— 243 567 243 ., 1539, 138267 . 6723 . 51111, 5832, 972
1~ 4480 3200 @ 10 8 200 5 35 7 5
g 1T 9 g5, 202, 1304, 8252, 4504, 2736 g
5 105 35 3 5 15 7 7
p, —_ 243 1647, 81, 351, 28269, 1566 13581, 8748, 324
2 4480 22400 = 20 10 200 5 35 35 5
p, -2 278, 512, 128, 4352, 5888, 17408, 768, 1024
2 21 1575 315 9 75 45 105 7 35
5 - 41 143 1., 107, 249, 131, 407, 96, 4.,
13440 22400 30 360 200 45 405 35 5
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evaluating (2.4) at non interpolating points to obtain the continuous form as,

a ., 2., 243, 7, 243, 2 41
Yo=2Y 1 ~Yau=oeh?f 4 h2f ST hf 4o hif SR S f T
el 713440 21 i 44800 nd 105 g 4480 nel 21 o 13440 ™ (2.5)
y By oeZy o BOL .. 188, | 52502, 4070, OLUT,, 20478,  4AL46 ., 22083 ,
mio37mi 3 8817984 8505 n+i 688905 mi 90720 nei 91854  nei 544320 m? 688905 o3 11022480
gy 3y gLy UM L 4041, 350, OBIOL ., | 23393, 6483, 43, | L0ML .
mio27l T2 2293760 286720 v 6720 i 2293760 i 286720 o2 2293760 % 896 S 6881280
g4y by 210, 20, 25052, 677 ., 12182, 1000 . 628, 44650 .,
mio37ml 3 44089920 1701 w; 688905  n+; 181440 o+l 229635  m: 544320 ol 19683  m: 44089920
y 2y by 45U, 20, 5098, 2963, T2, o 2406, 22418, 88629
md 3 i 3 88179840 1701 ni 137781 i 72576 i 229635  ni 1088640  n+l 688905 ne2 88179840
1 1 5179 ,. . 4941 21, 136323 , 37883, 18873 , 109 , 10373
Y 3=2Y 175 Yea =" hof, + 1 Tain 1t 17 1t 2" oonn 37 n+l
me 27l 2 6881280 286720 i 13440 i 2203760 o+l 860160 i 458752 2 2240 n-S 6881280
differentiating (2.4) once, yields
L 111123 26
' 2 ' ! .
y(t):Gl(t)y 1+O-1(t)yn+1+h Zﬂj(t)fn+j+ﬁv, (t)fmvi 'Vizolgli’g’alg’i ( )
2 "™ j=0 4 4
The coefficient 01,0080 8. BBy, By B By By 8T8 GiVen by,
2 6 4 3 2 3 4
o', = —2
B
o'y =2
Sy — — 1867 . 113 ., 427 ., 3367 ., 3752, 791, 1056 ., .o
40320 12 9 24 15 3 7
y, 54 +1944t2 2376 2 4 9072t4 18792 5 & 21816t6 - 93312t7 + 23328 8
s 175 35 5 5 ) 5 35 35
B — 26 512 2 o+ 45568t3 - 21248t4 + 28160t5 N 171008t6 + 251904t7 9216 e
b 175 5 45 5 3 15 35 )
£ = — 567 - 729 2 _ 1539 3 o+ 138267 4 _ 40338t5 + 51111t6 46656 _, + 8748 8
3 3200 10 2 40 5 5 7 )
s, — 143 1., 107,, 249,, 262,, 407,. 768, 36
> 22400 10 90 40 15 15 35
g, = 1647 243 . 702 ., 28269 ., 9396 . 13581, 69984 , 2916,
3 22400 20 5 40 5 5 35 5
5 — 278 512,.  512,, 4352 ., 11776, 17408, 6144 ., 9216,
b 1575 105 9 15 15 15 7 35
g 143 1., 107., 249, 626, 407, 768, 36
22400 10 920 40 15 15 35 5
On evaluating (2.6) at all point, so that the following discrete methods are obtained
hy' 42y | -2y, ——007 e 54 ¢ 26 ¢ S67 o 9 1647 . 278 148
nl 40320 " 175 mi 175wl 3200 i 35 il 22400 nf 1575 ni 22400
, 13609 167 114598 5611 8789 35107 74014 18511
hy' 142y 4 =2Y,, == hf, +—hf 1 - 1 F oot o hf - 2= 3 b
wt Tt 4898880 4725wl 382725 mi 50400 ni 26515 nei 302400 2 382725 3 3061800
hy' 42y -2y, oL e, 24278 23650 273213 | 73843 . 46053 6470 . 156281 .
nd 0L 573440 " 358400 n:i 100800 i 2867200 n+i 215040 n-i 409600 2 33600 nd 25804800
, 811 302 72418 28039 8777 69989 73954 296341
hy' 142y 4 =2Yp.=-— P rerrL i it hf - zhf .+ hf , - e ne1
nt et 279936 " 4725 ni 382725 i 201600 i 25515 nl 604800 n2 382725 nl 48988800
, 67 27 . 386 1539 . 11 1161, 298 . 11
ny n{'z ymg s = 30160 hf, " 350 “’mg 1575 hfn+§+5600 hfn+§ 42 hfn+§+11200 hfn+§ 1575 > 1800 s
, 27569 302 10894 436339 3713 116789 77794 292261
hy' .42y | =2y, =- ntoon =il hf - 1+ 2~ 37 hf,
2 L 9797760 " 4725 n-i 54675 i 201600 i 25515 n-l 604800 n-i 382725 nd 48988800
. 3067 24273 2371 662013 11349 717471 17117 17329
hy' 342y =2y, =- hf, + el L hf , ————-hf o+ 2~ 3~ n
A 1032192 " 358400 i 11200 i 2867200 nei 71680 n:i 2867200 nZ 100800 n-2 2867200 @2.7)
By a2y o —2yps = f, - g DMy 23409 Ay L7793, 384, 10793 . '
nd 4480 " 175 nl 1575 i 22400 i 15 nl 22400 mZ 525 md 201600
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now, combining (2.5) and (2.7) in the block form to yield the block hybrid method, which can be

written explicitly as equation 2.8.

1 1000061 ., 1247 ,,, 150733 , 104833 , 409 , 47623, 5989 30853 |,

Yy =Y, tohy'+ fot s 1 hof |+ il 2" ogeaeN f st ——hf
wt =9 e Y 0 76350680 42525 vl 3440525 ' 3628800 'l 45027 'n-l 10886400 v 3444525 -2 ' 881798400
Yy elny o JOTAL o BSBET | S0 SGOIST .. I7ED .. . 0099 .. 9 .. . TIO ..
wt TI Y 0643840 1433600 i 4800 'n-l 11468800 ! 860160 v 11468800 'n2 201600 2 11468800
y oy iy ML 4L A6 67 . 54 3853 . IS8 . Bl .
wt TV 3 02008 22525 o1 3444525 'l 8100 ol 220635 i 340200 2 3444525 -l ' 3444525
Y o=y thy a0 ey 2oy 89 pap 6399 o L yap L 788 oy ML pag 19 g
wt I T a0640 175" ol 525" ot 22800 'nl 30wl 44800 w2 1575 'n:2 134400
y oy e2ny JBBI2 o S8 TGGT2 .. | 3022 | 5024 .. 166 S4B16 .. 6B .
w2 T3 " ee8005 22525 'nl 3444525 ol 14175 'l 220635 vl 6075 'nZ 3444525 'n2 ' 3444525
y oy elny JOIET o GGBL . SBAL.  267TOL.. | G783 .. d6MST . 129 .0 2697 ..
wd T TN  sesn 1433600 'n-1 22400 't 11468800 -1 286720 v 11468800 -2 11200 '-: ' 11468800
Vo =Yn + hy'"+£h2f"+ﬂh2f 1—%hzf 1Jrﬂhzf l—i 2f 1Jrihzf Q—ﬁhzf SJrihszl

2520 175 ol 525 n2t350 w210 wl'1a00" 2 1575 e300
.. 426463 . 65 34202 11633 2228 5149 1292 3313
V1= Y g7a7760 "™ T 189 Mt 76545 "t T 20320 et 25515 et T 120060 " n-2 76545 " n:2 T g707760 (2.8)
s 5 a2 3 2 3 n "
gy ST O3 TOT. 1569 1807 . 2STL 47 1691
e 5160960 " 71680 n-i 20160 -l 573440 n-l 215040 '« 573440 w2 2880 n: ' 5160960
L ooeseL . 352 25856 797 2216 319 256 a1
Yy =Yt wtoohf y———hf 4o =hf  —————hf 4 —hf - hf e hf
wl 612360 " 945 'n- 76545 w1 2520 'n-1 25515 w7560 -l 15300 n-% 122472
. 1733 27 124 405 1 27 4 1
Vot ™Y 2050 M 70 ™t 315 et Taog "ot T220 1wk o6 w2 T3t 2 Ta0320 ™
2 5 4 3 2 3 2
.. 339, 352 26624 124 2848 113 2048 32
y' o=yt ——hf+——hf - hf e hf  ————hf 4+ ohf  ———hf e hf
m 76545 " 945 ol 76545 -l 315 'nl 25515 el 045 'nl 76545 nl ' 76545
.. 24849 26073 807 234009 7083 101331 3 39
y' o=yt nt=———hf [ ———hf |+ hf hf |+ hf ,———hf ,+———hf_,
wl 573440 " 71680 w2240 ol 573440 'nl 71680 -l 573440 v 448 n: ' 114688
yoamy Dt gy By 283y 104, 248y 26 L ISLy

2520 " 315 'nl 280wl 105wl 280 'n2 315 w2 2520

3 ANALYSIS OF COMPUTATIONAL BLOCK HYBRID METHOD

In this section, the analysis of the basic properties of the new method is analyzed. These properties
are order, error constant, consistency, zero-stability and region of absolute stability.

Let the linear operator defined on the method be ¢[y(t);h], where,
R O
Aly():n)= A -3 050 he g 1y, )b (Y, ) (3.1)
i=0 .

Expanding v, and F(Y,,) in Taylor series and comparing the coefficients of h gives
Aly(t):h}=Coy(t)+Cy'(t)+---+C,h Y (t)+ C ,.hP y**(t)+ C, h "2y 2 (t) + - (3.2)

Definition 3.1: The linear operator L and the associate block method are said to be of order p if

C,=C,=-=C,=C,,=0, C,,=0. C,, Iis called the error constant and implies that the
truncation error is given byt =C_,h*?y**(t)+0h""
Liy(t): h}=Cyy(t)+ Coy'(t)+---+ Cn°yP(t)+ C, . h" y P (t)+ C,, ,n* Py " *(t)+ - (3.2)
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1 J

@ [Ej 1, , 1000061 hi* g 1247 (1) 150733 (1) 104833 (1) 409 (1) 47623 (2) 5989 (3 30853
yY -y, ohy' - yr -y + =- =+ (W
<t 6 176359680 = 42525\ ) 3424525\ 2 ) " 36288003 ) 45927\ 2 ) " 10886400\ 3) 3444525\ 2 ) " 881798400

1 J
& [Zj 1y, 101741 Zh‘*z 85887 (1) 379 (1) 509157 (1) 13789 (1) 90009 (2) 629 (3) 719 A
= Yo = 4" " 20643820 " = Y2 | 14330006 )~ 28001 4 11468800\ 3) 860160\ 2) 11468800\ 3) 201600(4) 11468800

l J
& [Ej 1., 14221 . &hi? . .[3874 (1) 373376 (1) 617 (1) 5314 (1) 3853 (2) 15488 (3 311
Y=Y hy - hy",—>—y! Sl o= =+ <= |+ (W
= 3 1102248 = 42525\ 6) 3444525\ 4 ) 8100\3) 229635\ 2) 3402001 3) 3444525\ 4) 3444525

1 j
[E) 1., 1621 h'2 27(1) 89 (1) 6399 (1) 1(1) 783 (2) 11 (3 9
> -y, ->hy,-———hy —Z v ot S e S e S e S h*f,, =0
= 2 80640 ~ 175 6) 525(4) " 44800\3) 30l2)" 44800\3) 1575 134400

2 J
& [Ej Ly 2y, 18812 *Zhlz 11| 9248 (; | 796672 (1), 3022 1)7 5024 (;} 166 (2) 34816 (§ L 682 0
= Yo~ 3"V~ aso0s " = Yoo | 42525\ 6 ) 3444525\ 4 ) " 14175\ 3) " 229635\ 2) 6075\ 3 ) 3444525\ 2 ) 3444525

3]
i[i) o _ghy, LELT A _Zhl+2 12 356481(1] 5841 (;} 2827791 [g)_ 3753 [E}r 461457 (g]_ 129 [E}r 2637 )
<o " 458752 0 " & Yo" | 1433600 6 ) 22400\ 4 ) " 114688003 ) 286720\ 2) 11468800 3) 11200\ 2 ) 11468800
» (1)} 2

Oy iy 208y S S 1) B 20, 7 (2) () L
ot 520 O 175\6) 525(4) 350(3) 21l2) 1400(3) 1575(4) 300

Comparing the coefficient ofh, according to Skwame et al. (2019), the new method is of uniform
order p=[7 7 7 7 7 7 7[with its error constant are given respectively by
C,,=|-13640x10" —13281x10% -13497x10% —11961x10" -14526x10% —13561x10"° —-1.4353x10"]

3.2  Consistency of the Method

A numerical method is said to be consistent if the following conditions are satisfied.

I. The order of the method must be greater than or equal to zero to one i.e. p>1.
k
2.a;=0

ii. i=0

i. ~ AN=p()=0

iv. P(r)=30c(r)

Where p(r) and of(r) are first and second characteristics polynomials of our method. According

to Skwame et al. (2019), the first condition is a sufficient condition for the associated block method
to be consistent. Hence the new method is consistent.
3.3  Zero Stability of the Method

Definition 3.2: the numerical method is said to be zero-stable, if the rootsz,,s=1,2, -,k of the first
characteristics polynomial p(z) defined by p(Z):det(ZA(O)—E) satisfies |z|<1 and every root satisfies
|z,|]=1 have multiplicity not exceeding the order of the differential equation, Skwame et al., (2020).

The first characteristic polynomial is given by,
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1000000 [00O0O0OOGO0T1|fzo0000TO0 -1
0100000O0 |00O0O0OOTO0Z1 |0z 000O0TO0 -1
0010000 |00O0O0OOTO0Z1 |00z 00O -1

p(z)=/z210 0 0 1 0 0 0|-|/0O O 0 O O O 1|=|0 0 O z 0 0 -1 |=2z%2z-2)
00001100/ |00O0O0OOTO 01 00002z 0 -1
000O0OOT1O0|00O0OOTO0Z1f 00000z -1
/000 00O 1|0 0O0O0O0TO0T11f [00O0O0O0O0 z-1]

Thus, solving for Zin

2°(z-1) (3.3)

gives z=0, 0,0, 0,0, 0, 1. Hence the new method is said to be zero-stable.

3.4 Convergence of the Block Method

Theorem 3.1: the necessary and sufficient conditions for linear multistep method to be convergent
are that it must be consistent and zero-stable. Hence the new method formulated is consistent
Skwame et al. (2019).

3.5  Region of Absolute Stability of our Method

Definition 3.3: the region of absolute stability is the region of the complex z plane, where z=2h

for which the method is absolute stable. To determine the region of absolute stability of the block
method, the methods that compare neither the computation of roots of a polynomial nor solving of
simultaneous inequalities was adopted. Thus, the method according to Sunday (2018) is called the
boundary locus method. Applying this method we obtain the stability polynomial as

)~ oo - e o I D (I 61 e (3.4)

711612160 = 14631321600 " 87787929600 34836480 T 37623398400 829440

+[ 1235057 ;481 w’)h8+( 128809 . 67 W7jh6+[ 817 s, 113 w7)h“+(—Ew6—£w7jh2—2w6+w7

" 522547200 414720 T 6967296 5184 " 5040 1152 30 24

Using the stability polynomial (3.4), we obtain the region of absolute stability in figure below as

"_——__\'\

/ \

0.4 /
| S ~

Im(z)
o
N
S

Figure 3.1: Stability region.
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4 NUMERICAL APPLICATIONS AND RESULTS

In this section, the effectiveness and accuracy of the proposed method are evaluated by applying it to
real-life cases as well as second-order highly stiff initial value problems of the form (1.1), using
three test examples. The obtained results are then compared with those of existing approaches,
particularly the methods developed by Skwame et al. (2017), Sabo et al. (2021a), Areo and Rufai
(2016), Olabode and Momoh (2016), and Lydia et al. (2021).

The tables and figures presented below make use of the following notations: ttt represents the points
of evaluation, while ENM denotes the error in the new method. ESBS17 refers to the method
proposed by Skwame et al. (2017), and ESKV21a corresponds to the approach developed by Sabo et
al. (2021a). Similarly, EAR16 stands for the method of Areo and Rufai (2016), ELINJ21 represents
the contribution of Lydia et al. (2021), and EOM16 refers to the work of Olabode and Momoh
(2016).

Problem 4.1:

The problem 4.1 involves a mass-spring system where a weight displaced from equilibrium and
subjected to an external force is modelled mathematically, assuming no air resistance, to compute its

motion over time, we consider
y"(1)=25in 4t-16y, y(0)=—, y(0)=0 (4.1)
with the exact solution is given by
1 1 . 1
t)=—=cos4t + —sin 4t — —tcos4t 4.2
y(t) > s 7 (4.2)

See: Skwame et al., (2017) Sabo, et al., (2021a).

Problem 4.2:

The problem 4.2 models simple harmonic motion of an object stretching a spring, deriving the
equation of motion from Newton’s law and solving it using the given initial displacement of 18
inches above equilibrium and a downward initial velocity to determine the object’s displacement

over time. We consider

y"(t)=-64y(t) y(0)==,y'(0)=-3 (4.3)

We obtain the exact solution as
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y(t)= —gsin (8t)+ gcos(St) (4.4)

See: Areo and Rufai (2016).

Problem 4.3:

The problem 4.3 considers a second-order oscillatory system modelled by the Stiefel linear
oscillatory differential equation, where the governing equation of motion is formulated and solved to
analyze the displacement of the system over time under specified initial conditions. The equation is

y"(t)=0.001sin(t)-y'(t), y(0)=0, % =0.9995 (4.5)

With exact solution as

y(t)=sin (t)—0.0005t cos(t) (4.6)
See: Olabode and Momoh, (2016) and Lydia, et al., (2021).
Table 4.1: Showing the Numerical Results for Problem 4.1

t ENM ESBS17 ESKV2la
0.01 0.0000E00 1.6621E-09 1.0000E-19
0.02 3.0000E-20 1.1586E-08 4.1000E-19
0.03 1.0000E-20 2.9743E-08 9.1000E-19
0.04 1.0000E-20 5.6076E-08 1.6600E-18
0.05 1.0000E-20 9.0504E-08 2.6200E-18
0.06 0.0000E00 1.3291E-07 3.8000E-18
0.07 1.0000E-20 1.8317E-07 5.2000E-18
0.08 1.0000E-20 2.4110E-07 6.8500E-18
0.09 1.0000E-20 3.0653E-07 8.7500E-18
0.1 1.0000E-20 1.6621E-09 1.0850E-17

Table 4.2: Showing the Numerical Results for Problem 4.2

t ENM EAR16

0.1 3.0763E-11 3.3496E-07

0.2 1.9247E-10 1.6371E-06

0.3 2.3639E-10 3.2716E-06

0.4 1.4144E-11 3.5979E-06
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0.5 4.6555E-10 1.3589E-06
0.6 7.7534E-10 2.9143E-06
0.7 6.0155E-10 6.7226E-06
0.8 9.6414E-11 7.0589E-06
0.9 9.4457E-10 2.6543E-06
1.0 1.3512E-10 4.6056E-06
Table 4.3: Showing the Numerical Results for Problem 4.3
t ENM ELJINJ21 EOM16
0.1 3.0000E-20 2.8269E-12 1.0169E-11
0.2 1.9000E-19 5.8994E-12 2.0390E-11
0.3 5.0000E-19 6.8309E-12 1.5451E-13
0.4 9.4000E-19 1.4991E-12 8.1063E-11
0.5 1.5000E-18 1.8395E-12 2.5377E-10
0.6 2.1600E-18 1.6559E-11 5.4848E-10
0.7 2.9200E-18 1.2970E-11 9.9571E-10
0.8 3.7700E-18 8.4312E-11 1.6260E-10
0.9 4.6800E-18 5.3240E-11 2.4697E-10
1.0 5.6400E-18 3.2126E-11 3.5575E-10
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Figure 4.1: Graphical Curve of table 4.1
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Figure 4.3: Graphical Curve of table 4.3.

5. DISCUSSION OF RESULTS

The efficiency and accuracy of the newly proposed method for solving second-order initial value
problems (IVVPs) were tested using three benchmark problems that represent real-life applications
and mathematical models. The performance of the method was evaluated by comparing its results

with those of established approaches, including those by Skwame et al. (2017), Sabo et al. (2021a),
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Areo and Rufai (2016), Olabode and Momoh (2016), and Lydia et al. (2021). These comparisons
demonstrate the advantages of the new method in addressing both stiff and oscillatory systems more
effectively than the existing alternatives.

Problem 4.1, which models a classical mass-spring system without air resistance, served as a test
case for oscillatory motion. The numerical results presented in Table 4.1 and Figure 4.1 show that
the new method achieves smaller error magnitudes than the methods of Skwame et al. (2017) and
Sabo et al. (2021a). The consistently low error values confirm the method’s accuracy and stability in
capturing the behavior of oscillatory systems, making it a reliable alternative for dynamical system
simulations in physics and engineering.

Problem 4.2 focused on simple harmonic motion derived from Newton’s law of motion, with initial
displacement and velocity conditions. Results shown in Table 4.2 and Figure 4.2 indicate that the
proposed method consistently outperforms the approach of Areo and Rufai (2016), producing
smaller numerical errors across the evaluation points. The results highlight the method’s strength in
solving oscillatory systems while ensuring computational efficiency, reinforcing its adaptability to
classical mechanical problems.

Problem 4.3 addressed a more challenging case: a highly stiff oscillatory system modeled by the
Stiefel linear oscillatory differential equation. Stiff systems often pose difficulties for numerical
methods due to stability concerns. However, as shown in Table 4.3 and Figure 4.3, the proposed
method outperformed the techniques of Lydia et al. (2021) and Olabode and Momoh (2016) by
producing significantly smaller errors, especially at larger time steps. Taken together, the results
from all three problems confirm the robustness, accuracy, and versatility of the new method,
underscoring its potential as a reliable tool for solving second-order 1VPs across a range of scientific

and engineering applications.

6. SUMMARY AND CONCLUSION

This research developed and analyzed a new block hybrid method for the direct solution of second-
order initial value problems of ordinary differential equations. The method was designed with
improved accuracy and stability, making it suitable for stiff and oscillatory problems that are
common in applied sciences and engineering. The theoretical properties of the scheme, including its

consistency, zero-stability, and convergence, were established to ensure mathematical validity. The
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method was then tested on both real-life applications and highly stiff benchmark problems, with its
performance compared against existing methods by Skwame et al. (2017), Sabo et al. (2021a), Areo
and Rufai (2016), Olabode and Momoh (2016), and Lydia et al. (2021). Numerical results showed
that the proposed method consistently produced smaller errors and superior stability behavior
compared to the referenced methods, confirming its reliability and effectiveness.

The study concludes that the newly developed block hybrid method is a powerful and efficient
numerical tool for solving second-order initial value problems. Its demonstrated accuracy,
robustness, and stability, especially in handling stiff systems, make it a significant improvement over
several existing approaches. By achieving lower error magnitudes and enhanced convergence, the
method not only addresses the limitations of traditional schemes but also provides a practical
framework for applications in science and engineering where precise solutions of second-order
ODEs are essential. Future work may focus on extending the method to higher-order systems,
nonlinear models, and partial differential equations to broaden its applicability.
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