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Abstract  

This paper presents improving the reliability of critical safety instrument system using 

mathematical method and machine learning technique. The aim of the research is to improve the 

reliability of critical safety instrument system using machine learning technique and the main 

objective to develop a neuro logic solver and polynomial estimation model which monitoring the 

behaviour and distillation plant and control against system failure. To address this problem, 

methods such as risk assessment test, data collection, neurologic solver algorithm and error 

estimation algorithm and guided by the International Electrochemical Commission (IEC) 61508 

and 61511 methodologies for the design and implementation of Safety Instrument System (SIS). 

The risk analysis was done using inductive and deductive techniques which employed both fault 

tree analysis and self-defining equations to determine the probability of failure on demand (PFD) 

of the SIS components. The neurologic solver algorithm was developed using artificial neural 

network, tansig activation function and gradient descent back-propagation algorithm, while the 

error estimation algorithm was developed with recursive polynomial functions. These algorithms 

were implemented with Simulink, evaluated and cross validated considering Mean Square Error 

(MSE), regression, PFD, Risk Reduction Factor (RRF) and Safety Integrity Level (SIL). The 

result of the neurologic solver MSE is 2.98E-09, Regression is 0.9978 and PFD is 9.00E-04.  

Keywords: Safety Instrument System; International Electrochemical Commission; Safety 
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1. INTRODUCTION  

Chemical, petrochemical, gas compression, mining and many other types of manufacturing and 

industrial plant facilities can be very dangerous place to work in due to the high level of risk they 

pose. These risks include, fire hazard, tank overflow, gas release, chemical exposure or tank 

explosion, and as the daily demand for goods and services keep increasing, manufacturing 

companies are under lots of pressure to satisfy these demands and hence have increased technical 

process cycle, which proportionately increase risk and exposure of operators to hazards. 
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In order to minimize these risks, process control systems are installed to maintain a safe 

operation of the plants. These systems are operated by trained control system engineers and 

assisted by robust alarms to intelligently detect fault and alert the operators for safety measures. 

However, these measures alone cannot be relied upon to reduce the risk of fire, accidents 

explosion among other dangerous events which might occur as a result of fault to a level which 

is tolerable. Irrespective of the risk type, the process design, basic process control, alarm and 

operator engineer as layers of control only provides the first three levels of protection. 

According to Durgut and Leblebicioglu (2016), each of these layers provide a tenfold safety 

better than the lower step. In order words, the process control provides tenfold more safety than 

the process design. The process design ensures the various control system equipment such as 

valves, pumps, plants are in the right system specifications. The Basic Process Control (BPC) 

systems are then installed with these appropriate devices, controllers and monitoring logics 

which allow the industrial plants to be operated within the safest ranges for temperature, pressure 

and flow rates of fluids. The alarms on the other hand are installed to alert the control system 

engineer of any nonlinear technical process, such as faults, overheating, excess concentration and 

pressure, so as to take necessary precautionary measures before the risks become an accident.  

Nevertheless, even with these measures of protection in place, the risk may still be too great for 

an accident to be fully prevented from happening. For instance, in 2005, a plant explosion at the 

Texas oil and gas refinery killed 15 workers and injured 150 others. Recently in June 2020, the 

Philadelphia Energy solution refinery exploded and destroyed the alkylation unit where crude oil 

is converted to high octane gas (Susan, 2019). In the same month, Agence (2020) reported a 

plant explosion at the Nigerian refinery in Niger Delta, killing 7 workers and causing damages of 

equipment worth millions of naira. Another explosion occurred at the Florida chemical facility 

where lots of industrial properties were destroyed costing millions of dollars (Amanda, 2020a). 

Most recently in November 2020, 2 people were killed as a result of reactor explosion in the 

Indian pharmaceutical company (Amanda, 2020b; Nana 2020). In the same month, 2500 people 

were affected and 3 deaths recorded due to the explosion at the Baghjam Indian oil field 

(Guardian Times; 2020). 

All these industrial facilities characterized with these fatalities, have process control systems, 

alarms and trained engineers; but these three levels of protections did not reduce the risk of 

accident to a level that is tolerable. This is because, sometimes in the process control design, 

systems which are meant to monitor the technical process might not consider some variables 

which will lead to accident. For instance, the alarm can easily malfunction without the 

knowledge of the operator engineer and hence will not notify threat when detected. The logic 

solver might fail to activate the sensors or control valve when overflow is detected. These as a 

result have become a major challenge and hence require a more reliable approach to address 

these risks and minimize accident occurrence to the lowest level. 

To achieve this, the Occupational Safety and Health Administration (OSHA) and several 

companies in the chemical, oil and gas industries with other professional groups like the 

International Electrochemical Commission (IEC), embraced the idea of defining risks as 



International Journal of Real-Time Applications and Computing Systems (IJORTACS) 
 

Corresponding Author Tel: +234 803 323 7369   575 
 

associated with general technical process function and then developed the ISA84 and IEC61508 

as a standard for the concept of industrial safety. These standards were later harmonized into a 

single signature as ISA-84/IEC-61511 which leads to the need for an extra well designed safety 

measure called the Safety Instrumented System (SIS) (Marvin, 2016). 

This SIS is presented as an additional layer of protection above the first three layers already 

pointed out. This layer is expected to provide an additional tenfold protection with a Risk 

Reduction Factor (RRF) of equal to or greater than 10 (Realpars, 2017). This is to say that each 

of the levels of protection like the process design, process control, alarm, and now SIS provides a 

tenfold RRF better than the other. That is, each level of protection is not only required by 

operation to reduce industrial risk hazards to a tolerable level, but must be determined by each 

individual company. To help achieve this, the standard has provided benchmarks for various 

industries like the oil and gas, food and beverages, chemical industries among others, depending 

on the level of risk they possess, called Fatal Accident Rate (FAR) which is a standard way of 

measuring overall risk. 

SIS is a system composed of control valves, logic solvers, sensors, transducers and final control 

elements which are designed to take the technical process to a safe state when predetermined 

nonlinear conditions are violated. This SIS is defined using a Safety Instrumented Function (SIF) 

which specifies the exact control function the SIS is expected to activate, when fault is sensed 

(Mohamed et al., 2007). However, despite the improved risk reduction factor offered by the SIS, 

it also has a Probability of Failure (POF). The POF can occur due to technical challenges like 

sensor faults, faults from the isolation valves, even the logic solver not responding when 

expected and are called independent failures, then all or some of the components can fail 

simultaneously due to common cause problem (Eke and Eneh, 2007). 

Failure can be very dangerous when all components fails or when critical components without 

redundancy like the logic solver fails. This can be very catastrophic and fatal when it occurs and 

hasto be drastically reduced from happening. The conventional Programmable Logic Controller 

(PLC) based logic solver can easily fail today due to the many technical problems like 

communication error, memory loss, processing error, module failure, problem of oscillation, etc. 

(Cory, 2013; Yuvraj, 2012; Cauffriez et al., 2014). This technical problem presented the lack of 

integrity and reliability on the conventional SIS system and hence presents the need for 

optimization. 

This paper therefore presents the development of a machine learning based logic solver 

algorithm which will reduce the risks identified in the conventional PLC based logic solver 

system, then an error estimation model which will monitor and perform critical reliability 

assessment on the SIS will be developed using recursive polynomial function. 

2. RESEARCH METHODOLOGY 

The methodology used for the development of the new SIS was guided by the IEC 61508 and 

IEC61511 standards which required that the safety and reliability standard of each individual 

component in the SIS is attained. The study begins with the risk analysis of the technical process 

with major focus on the probability of failure on demand of the SIS components to decide the 
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safety integrity level. From the assessment, the critical safety component with potential for 

dangerous failure was identified and then a machine learning algorithm was used to develop a 

more reliable solution and implemented on the testbed with simulation. The safety integrity level 

was analysed and compared with the characterized testbed for percentage improvement.  

2.1 Data Collection 

Having successfully performed the risk assessment test on the SIS, the data was collected 

considering the Probability of Failure on Demand (PFD) of the system components, the detected 

and undetected common cause failures, diagnostic coverage for each component for a period of 

39 days. The data are reported in the next chapter and analysed considering the usage of safety 

integrity level and risk reduction factor according to the IEC standard. Another data of the 

fractional distillation plant was also collected from the case study containing attributes such as 

the temperature and pressure behaviour of the plants and was used later in the work for 

development of the machine learning based algorithm proposed. 

 

3. MACHINE LEARNING BASED LOGIC SOLVER SYSTEM 

From the risk assessment test conducted, the PLC logic solver remains one of the most critical 

components of the SIS and it has no redundancy. This component is the coordinator of all control 

operation based on data collected from the sensors to ensure safety is achieved in the technical 

process and requires the most attention to reduce the failure probability to approximately zero. 

Other components like the final control elements which are the valves, the sensors such as the 

pressure and temperature sensors all have redundancy (if one fails, another can complement) and 

can operate in 1003 or 1002 modes respectively, however the logic solver which does not have 

redundancyis the most important components in the SIS need to guarantee functional safety.  

To this end, machine learning based logic solver is developed using artificial neural network, 

activation function and training algorithm to reduce most of these technical problems attributed 

with the conventional PLC based logic solver and hence reduce failure probability to the 

minimum. The neural network model was developed using the interconnection of neurons, 

activation functions, training algorithms as shown in the figure 1; 

 
Figure 1: The neural network architectural model  
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The model showed how the neurons which have weights and bias was configured according to 

the input data class of the training set, the activation function and training algorithm to learn the 

distillation plant data collected and generate a neural network-based logic solver algorithm. The 

activation function used is the Tangent sign mode (tansig) activation function which enables the 

neurons to activate and also ensure data convergence between (-1 and 1). The training algorithm 

used in the study, is the Gradient descent back propagation type as it allows the neurons to learn, 

check its learning rate and feedback for adjustment and continuous learning until the least error 

is achieved as shown in the flowchart of figure 2. The flowchart of the training algorithm is in 

figure 2 

 
Figure 2: Gradient Descent Training Back-propagation Algorithm 

The flow chart of figure 2 present the training algorithm used to train the neural network model 

in figure 1. To achieve this, the plant data was loaded into the neural network for configuration 

and training using the algorithm in figure 2. The neural network training model which shows 

how the neural network identified the loaded plant data and then train the neurons with the 

training algorithm presented above is shown in figure 3; 
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Figure 3: The neural network training model 

Figure 3 present the flow chart of the neural network training process used in generating the 

neuro logic solver algorithm and hence the neural logic solver system Simulink, the data of the 

plant loaded into the neural network was used to configure the network and then train the neuron 

with the training algorithm to generate the neurologic solver algorithm. During the training, at 

each epoch the regression and training error was checked until least error is achieved and then 

the neuro logic solver algorithm developed as shown in the pseudocode below; 

3.1 The Logic Solver Algorithm 

1) Start  

2) Load plant data 
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3) Configure neural network with table 1 

4) Initialize training algorithm 

5) Train neural network  

6) Check for training failure  

       7)   If  

7) Failure probability ≈ 0  

8)  Generate logic solver algorithm 

9) Else  

10)  Back-propagation 

11)  Adjust neuron  

12)   Repeat step (5; 6; 7 and 8) 

13)  Generate logic solver algorithm 

14) Else  

15)  Do (step 13)  until step 8 is true 

16)  Generate neurologic solver algorithm 

17) Generate the neurologic solver block 

18) End if 

19) End if 

20) End   

 

Table 1: The Training Parameters  

Training Parameter Assumed Value 

Learning Rate 0.001 

Number of Epochs 100 

Batch Size 32 

Activation Function ReLU 

Loss Function Mean Squared Error (MSE) 

Optimizer Adam 

Regularization Techniques L2 Regularization (weight decay) 

 

The training parameters in Table 1 present the neural network properties which values for input 

layer and hidden layers were inspired by the plant attributes (class in the training set collected), 

other values were standard neural network properties auto input by the neural network tool used 

for training. The flow chart of the SIS developed with the neurologic solver is presented below. 
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Figure 4: Flow chart of the neuro-based SIS operation 

Figure 4 present the neuro-based SIS system which collect data from the temperature and 

pressure sensor and used to monitor the behaviour of the distillation plant for tank overflow 

when the process control logic solver fails. The SIS detects the problem and activates the control 

valves to stabilize the plant and prevent the problem. The system block diagram is presented in 

figure 5; 
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Figure 5: Block Diagram of the neuro-based SIS 

The figure 5 shows how the plant behaviour was collected by the sensors and fed forward to the 

neuro-based logic solver algorithm which trains the data to detect the distillation plant overflow 

problem and then activate the final control element which are the valves to control the plant 

behaviour. 

4. SYSTEM IMPLEMENTATION  

The neuro-based SIS was developed using the models of the testbed which has the distillation 

plant, the sensors, the logic solvers and the final control elements. The study focused on the logic 

solver which was with many limitations and probability of failure due to common cause 

problems. Model of the new SIS was developed using artificial neural network as shown in 

figure 3 and the mathematical transfer function presented in figure 6; 

 
Figure 6: Simulink transfer function of the neural network 

Figure 6 shows the neural network transfer function which represents the interconnection of the 

neurons with the activation functions and training algorithm to train the data of the distillation 

plant collected and generates the neuro logic solver algorithm.   
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5. RESULTS OF THE NEUROLOGIC SOLVER ALGORITHM 

From the risk assessment test conducted, it was uncovered that the PLC based logic solver has 

potential for dangerous failure as it is one of the most vital components of the SIS. This study 

developed neural network-based logic solver as shown in the figure 4 and used to improve the 

integrity of the SIS. 

The performance of the neurologic solver was evaluated using regression and Mean Square Error 

(MSE) model as appeared in (Inyama and Agbaraji, 2015). The MSE performance were 

presented in figure 7; 

 
Figure 7: The MSE of the neurologic solver 

The analysis of the results depicted in Figure 7 provided valuable insights into the accuracy and 

effectiveness of the neural network training and testing process. The primary objective of this 

assessment was to minimize the error associated with the neurologic solver algorithm. 

Remarkably, the achieved Mean Squared Error (MSE) of 2.7494E-09 indicated a level of error 

that can be considered practically negligible. This exceptional performance demonstrated the 

capability of the neurologic solver algorithm to generate highly precise and reliable outcomes. 

Furthermore, the subsequent evaluation focused on assessing the regression performance of the 

neurologic solver. This analysis aimed to determine the solver's ability to accurately detect and 

interpret signals from sensors, enabling it to make precise control decisions. Figure 8 visually 

presents the performance of the neurologic solver in this regard. 

The regression analysis involved comparing the predicted values generated by the neurologic 

solver with the actual sensor signals. By measuring the degree of correlation between the 

predicted and actual values, the regression performance of the neurologic solver was assessed. A 

high degree of correlation would indicate that the solver effectively captured and interpreted the 

sensor signals, leading to accurate control decisions. 
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The results obtained from this evaluation provided crucial insights into the efficacy of the 

neurologic solver in detecting sensor signals and making precise control decisions. The close 

alignment between the predicted values and the actual sensor signals depicted in Figure 4.2 

demonstrated the solver's ability to effectively analyze and interpret the data. This robust 

regression performance further substantiated the reliability and accuracy of the neurologic solver 

algorithm in the context of the SIS application. 

Overall, the combination of minimal error indicated by the MSE analysis and the strong 

regression performance showcased in Figure 8 reinforced the effectiveness of the neurologic 

solver algorithm. These results contribute to the overall confidence in the neurologic solver's 

ability to accurately process sensor signals and enable precise control decisions, thus enhancing 

the reliability and performance of the system. 

 
Figure 8: The Regression results 

Figure 8 presents the regression performance of the neurologic solver. The aim here is to achieve 

a regression approximately or equal to one. The result here showed that the regression for the 

neurologic solver is 1, which implied reliability in controlling the tank overflow when error 

occurs in the process control section. To measure the failure rate of the neurologic solver, the 

neurologic solver was tested at operating time of 500hrs and the result presented in figure 9; 
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Figure 9: The neurologic solver PFD 

Figure 9 presents the PFD of the neurologic solver using the PFD model(Innal et al., 2019) to 

identify the failure of the neurologic solver over 500 hours of operation time. From the result, the 

PFD is 9.14E-04. This PFD shows that the neurologic solver has a SIL of 4 when referred to the 

IEC standard. This section is part of solution for the performance evaluation objective. 

6. CONCLUSION AND RECOMMENDATION 

This paper successfully enhances the reliability of critical safety instrument systems through the 

integration of mathematical methods and machine learning techniques. The machine learning 

algorithm utilizes neural networks to develop a crucial component of the safety instrument 

system, known as the logic solver. On the other hand, a mathematical method involving a 

recursive polynomial estimation algorithm is employed to construct a reliability assessment 

model for error estimation in the safety instrument system and the implementation of control 

measures. 

To evaluate the performance of the developed algorithms, they are implemented using Simulink 

and assessed using various metrics such as Mean Squared Error (MSE), regression analysis, 

Probability of Failure on Demand (PFD), safety integrity level, and Risk Reduction Factor 

(RRF). 

The results obtained from the neurologic solver indicate an MSE of 2.98E-09, regression value 

of 0.9978, and a PFD of 9.00E-04. Furthermore, the analysis of the PFD, based on the IEC safety 

integrity table, reveals that the safety integrity level is upgraded from 2 (with PLC) to 3 (with 

neural network). These findings demonstrate that the neurologic safety instrument system and the 

developed mathematical model for error estimation effectively improve safety and restore 

reliability to the technical process. 
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6.1 Recommendation for future 

1. The study can be further improved considering other highly risk critical technical process 

plant other than distillation plant. 

2. The solution proposed can be practically validated in further studies  
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