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Abstract  

Interference remains a critical challenge in next-generation wireless networks, affecting both quality 

of service (QoS) and spectral efficiency. This study proposes a machine learning–based interference 

detection and management framework to address these challenges. A dataset consisting of key 

interference indicators including transmit power, path loss, antenna gain, user density, frequency 

reuse factor, and signal-to-interference-plus-noise ratio (SINR) was used to train and evaluate 

several machine learning algorithms. Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), Logistic Regression, Decision Trees, and K-Nearest Neighbours (K-NN) were benchmarked 

using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and classification accuracy. 

Among these, the ANN achieved superior performance with a prediction accuracy of 99.78%, 

alongside the lowest error rates (MAE = 0.0022, RMSE = 0.0469), demonstrating strong 

generalization and robustness. To extend this predictive capability to real-time interference 

management, the study introduces a Dynamic Channel Sensing and Queuing Transmission Model 

(DCSQTM), which leverages Markov and Poisson processes for probabilistic estimation of channel 

availability and queuing delays. Machine learning predictions were integrated into DCSQTM to 

enable dynamic channel selection and adaptive transmission strategies. The combined framework 

significantly enhances interference detection and management, providing a scalable and intelligent 

solution to improve spectral efficiency and ensure reliable QoS in next-generation wireless networks. 
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1. INTRODUCTION 

Interference in 5G networks has continued to 

present several challenges, including reduced 

quality of service, poor coverage, decreased 

throughput, handover failures, and reduced 

network efficiency, all of which have 

significantly impacted the user experience.A 

Self-Optimising Network (SON) is an 

intelligent network system designed to 

optimise its performance with minimal human 

intervention, operating automatically. SONs 

leverage advanced algorithms and machine 

learning techniques to manage and enhance 

the performance of wireless networks. The 

primary goal of a SON is to improve network 

efficiency, reduce operational costs, and 

enhance the overall user experience by 

adapting to changing network conditions in 

real-time. By continuously monitoring and 

analysing network data, SONs can 

autonomously adjust parameters such as 

power levels, frequencies, and resource 

allocation to maintain optimal performance 

(Srivastava et al., 2024). 

This estimated increase in data size has 

necessitated the need for a robust network 

architecture that will be able to manage the 

traffic while providing a quality user 

experience. To achieve this, researchers in the 
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scientific community have continued to 

explore different areas of wireless 

communication, identifying problems that can 

affect the quality of service due to increased 

data traffic and making recommendations for 

solutions. Some of the fruits of their research 

resulted in the present-day 5G network, with a 

potential data rate per second increased to 10 

GB/s, reduced latency of less than 1 ms, 

increased mobility speed greater than 1000 

km/h, and 99.9% targeted reliability of the 

network (Qamar et al., 2020; Alzubaidi et al., 

2022). 

The Dynamic Heterogeneous Interference 

(DHI) in the 5G network originates from the 

diverse and varying interference patterns in 

HetNet as a result of the interplay between 

different cells such as macro, pico, femto, 

device-to-device and wifi access points. This 

DHI nature stems from several factors, such as 

changing user mobility, traffic patterns, 

adaptive transmission techniques such as 

millimetre-wave frequencies, co-channel 

deployment, which allows multiple cells to 

operate on the same frequency, and variability 

in cell types. 

Machine learning has become a powerful tool 

for interference detection in wireless 

communication networks, offering a more 

dynamic and accurate approach to identifying 

and mitigating interference compared to 

traditional methods. Interference in wireless 

networks occurs when multiple devices or 

signals overlap within the same frequency 

spectrum, leading to degraded signal quality, 

reduced data rates, and higher latency 

(Siddiqui et al., 2020). Traditional interference 

detection techniques often rely on predefined 

rules and static configurations, which may not 

adapt well to the constantly changing network 

environment. Machine learning, on the other 

hand, leverages data-driven approaches to 

detect interference patterns in real time, 

providing a more flexible and responsive 

solution(Alzubaidi et al., 2022). 

One of the key advantages of using machine 

learning for interference detection is its ability 

to analyse large volumes of network data and 

identify complex patterns that may not be 

apparent through manual analysis. For 

example, supervised learning algorithms can 

be trained on labelled datasets containing 

examples of interference events, allowing the 

model to learn and recognise similar patterns 

in live network data(Meyer et al., 2020; 

Okello et al., 2024). Moreover, machine 

learning enables proactive interference 

detection, allowing networks to anticipate 

potential interference before it impacts 

performance. Predictive models, such as those 

based on time-series analysis or recurrent 

neural networks (RNNs), can forecast 

interference events by analysing historical 

data and current network conditions (Hedge, 

2021; Kumar et al., 2023). 

While many studies have applied different 

algorithms for the detection of interference, 

one of the notable studies is Okello et al., 

(2024) who applied a reinforced deep learning 

algorithm for the management of interference, 

but despite the success, there is need for 

improvement in detecting dynamic 

interference due to changing network 

behaviour, and this will be addressed in this 

research using machine learning based 

resource coordination technique. 

2. METHODOLOGY 

The methodology for this work is a mixed 

method which involves practical 

measurements and simulation experiments. In 

realising this methodology, drive test 

measurement on a 5G network was carried out 

in three different regions, which are urban, 

suburban and rural locations for data 

collection. The data collected from each 

region were separately analysed to read the 

impact of interference on user experience. To 

solve the interference problem, a machine 

learning algorithm was applied to develop a 

prediction model capable of detecting in time 

series channels with potential interference. 
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The prediction outcome formed the foundation 

of a proposed interference resource 

coordination model. Results obtained were 

discussed before system integration on the real 

5G network under study. Comparative 

analysis was used to validate the results and 

weaknesses of the work, and suggestions for 

further studies were identified and submitted. 

2.1 Data Acquisition  

The data for the implementation of this study 

was collected through characterization, which 

involves performing a drive test in different 

locations. The sites were selected from rural, 

urban, and suburban areas within Enugu State, 

Nigeria. The results were obtained during the 

measurement process of the drive test while 

considering metrics such as RSRP, carrier-to-

interference ratio, and reference signal receive 

quality, respectively, from 500 meters to 1500 

meters away from the test site. The data were 

collected in the morning from 8 am to 10 am, 

then in the afternoon from 2 pm to 4 pm. The 

results obtained from sire T6320 were 

reported in Table 1. 

Table 1: Results of site T6320 (Urban) 

Distance 

(M) 

Morning Afternoon 

RSRP 

(dBm) 

RSRQ (dB) CIR (dB) RSRP 

(dBm) 

RSRQ 

(dB) 

CIR (dB) 

500 -79 -8 28 -91 -12 20 

600 -81 -10 26 -93 -14 18 

700 -83 -10 25 -95 -15 17 

800 -85 -11 24 -97 -17 15 

900 -87 -12 22 -101 -18 13 

1000 -92 -14 18 -107 -21 10 

1100 -95 -15 17 -109 -22 8 

1200 -97 -17 15 -115 -24 7 

1300 -101 -20 11 -117 -26 5 

1400 -109 -24 9 -121 -29 4 

1500 -112 -27 7 -125 -31 3 

Average  -92.8182 -15.2727 18.36364 -106.455 -20.8182 10.90909 

 

Table 1 presents the result of the site T6320 

characterised in the urban area. The results 

obtained from the site vary with distance, 

which is normal. However, the average RSRP 

reported is -92.82 dBm, the average RSRQ 

reported is -15.27 dB, and the carrier-to-

interference ratio reported is 18.36 dB. These 

results indicated that in the morning, the 

quality of service on the cell was fair, the 

quality of the signal was also fair, and the CIR 

reported 18 dB, which is considered fair. 

Overall, the performance of the network is 

fair, which suggests the need for improvement 

through the management of interference. From 

the data collected in the afternoon, the average 

signal quality is -20 dB, which is poor. The 

average signal strength is -106 dBm, which is 

also poor. The CIR reported 10 dB, which is 

poor. These results collectively implied that 

the network performance significantly 

deteriorates in the afternoon due to increased 

interference levels. The drop in RSRQ to -20 

dB suggests a higher level of noise and signal 

degradation, likely caused by increased user 

activity, environmental changes, or multipath 

fading. Table 2 presents the measurement 

results in the rural area. 

Table 2: Results of site EN0457 (Rural) 

Distance (M) Morning Afternoon 

RSRP 

(dBm) 

RSRQ 

(dB) 

CIR (dB) RSRP 

(dBm) 

RSRQ 

(dB) 

CIR (dB) 

500 -65 -5 35 -67 -6 33 
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600 -67 -6 34 -68 -7 33 

700 -69 -7 34 -69 -8 31 

800 -71 -7 31 -71 -9 29 

900 -73 -8 28 -73 -10 27 

1000 -75 -9 27 -77 -11 25 

1100 -79 -10 25 -78 -11 25 

1200 -85 -10 25 -84 -14 21 

1300 -87 -11 23 -87 -16 20 

1400 -90 -12 20 -93 -16 17 

1500 -92 -13 17 -96 -19 15 

Average  -77.5455 -8.90909 27.18182 -78.4545 -11.5455 25.09091 

 

The results from Table 2 indicate that site 

EN0001, located in a rural area, experienced 

relatively stable network performance 

throughout the day but with slight degradation 

in the afternoon due to interference. In the 

morning, the average RSRP of -77.55 dBm 

and RSRQ of -8.91 dB suggest strong signal 

strength and quality, with a CIR of 27.18 dB 

indicating minimal interference and efficient 

data transmission. However, in the afternoon, 

the RSRP slightly drops to -78.45 dBm, while 

the RSRQ deteriorates to -11.55 dB, and the 

CIR reduces to 25.09 dB, reflecting an 

increase in interference. Table 3 presents the 

results of measurements carried out in the 

suburban area. 

Table 3: Results of site EN0001 (Sub-Urban) 

Distance (M) Morning Afternoon 

RSRP 

(dBm) 

RSRQ 

(dB) 

CIR (dB) RSRP 

(dBm) 

RSRQ 

(dB) 

CIR (dB) 

500 -73 -7 31 -85 -10 25 

600 -75 -7 30 -87 -11 23 

700 -79 -8 28 -90 -12 21 

800 -85 -10 25 -92 -13 19 

900 -87 -11 23 -95 -14 17 

1000 -90 -12 20 -97 -15 15 

1100 -92 -13 17 -99 -16 14 

1200 -95 -14 15 -102 -18 12 

1300 -97 -15 14 -105 -19 10 

1400 -99 -16 12 -108 -20 8 

1500 -102 -18 10 -110 -21 7 

Average  -88.5455 -11.9091 20.45455 -97.2727 -15.3636 15.54545 

 

Table 3 presents the site performance at 

varying distances. Averagely, the morning 

results reported -88.55dBm for the RSRP, the 

RSRQ reported -11.9dB, and the CIR reported 

an average of 20.45dB over the 1500-meter 

distance measurement. For the afternoon 

measurement, the average RSRP reported -

97.27 dBm, the average RSRQ reported -

15.36dB, and the average CIR reported 

15.44dB. The meaning of these results, 

considering interference impact on the cell, is 

that the network experiences a noticeable 

degradation in performance from morning to 

afternoon due to increased interference. In the 

morning, the relatively stronger RSRP of -

88.55dBm and an RSRQ of -11.9dB suggest a 

fair signal strength and quality, with a CIR of 

20.45dB indicating moderate interference 

levels. 
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2.2 To Train Machine Learning Model  

This section considered several machine 

learning models trained for the prediction of 

channels with potential interference problems. 

From the literature reviewed, it is clear that 

several machine learning algorithms have 

been applied by researchers for the prediction 

of interference; however, the recommendation 

made by researchers (Li et al., 2021; Ali et al., 

2023)contradicts each other because different 

algorithms were recommended by different 

researchers. Based on this evidence, we argue 

that selecting the best machine learning for a 

particular problem should not be based on 

assumptions or performance from another 

model; rather, it should be based on 

experimentation with different selected 

popular algorithms from literature. Based on 

this, this research proposed to train five 

machine learning algorithms, which are the 

neural network, support vector machine, 

decision tree, linear regression and K-nearest 

neighbour. 

 

2.2.1 Neural Network 

The neural network is a machine learning 

algorithm which is developed with several 

neurons, activation functions and layers. The 

type of neural network used is multiple-

layered neural networks (Li et al., 2024). The 

activation function used is sigmoid, the 

training algorithm used is backpropagation, 

and the regularisation model used is 

dropout(Sarikaya and Hinton, 2019). The 

number of inputs to the neural network is 13, 

the number of hidden layer neurons is 30, and 

the output layer is 2. The neural network was 

trained in a Python programming 

environment, using the data of network 

information for the 5G network collected from 

MTN.  

2.2.2 Support Vector Machine (SVM) 

SVM is an algorithm that operates by finding 

the best hyperplane that separates the 

instances of different classes in feature space. 

In this context, the SVM will be trained to 

classify the instances of interference based on 

real-time network information. SVM has a 

simple structure but a strong generalisation 

ability to solve problems with high 

dimensionality, and small sample numbers 

(Guo et al., 20221).For the SVM in this study, 

the Gaussian radial basis function is selected 

as the kernel function. By using the grid 

search method in combination with 10-fold 

cross-validation, the optimal parameters are 

determined as C = 3 and 𝛾 = 0.003. 

2.2.3 Decision Tree (DT) 

DT determines the categories of the samples 

in the dataset by assigning the sample data to a 

certain leaf node. The DT, when trained with 

the network information, was able to correctly 

predict channels with potential interference 

and prevent its impact on user experience(Ali 

et al., 2023). In the DT, each leaf represents 

the final prediction output when trained, and 

those leaves with wrong high loss values are 

pruned using the Gini index. This process 

continued recursively until the model for the 

detection of interference was detected. 

2.2.4 Linear regression 

Linear regression is a popular machine 

learning algorithm which models the 

relationships between feature spaces using a 

straight line. It determines the line of best fit, 

which perfectly relates the dependent and 

independent variables. Then it uses the value 

to predict changes in any of the variables 

based on new data input. The line of best fit is 

calculated with a regression line modely =
mx +  b, where m is the slope.x is the data 

and y is the output. To measure the error, the 

least squares method is applied, which 

computes the best line with a minimised sum 

of square difference between the actual and 

predicted data points(Montgomery et al., 

2021).  

2.2.5 K-Nearest Neighbour (K-NN) 

K-NN is an effective machine learning 

algorithm which operates by assigning a class 

label to an instance based on the majority 

class of its K-NN in the feature space (Bathija 
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et al., 2023). For our problem of interference 

detection in a 5G network channel, the K-NN 

determines whether a new instance 

corresponds to interference based on the 

similarity of its value to those of previously 

observed instances. K-NN can handle non-

linear relationships and is robust to noise  

(Biscaglia et al., 2023), making it a viable 

option for the prediction of interference 

channels in networks. 

2.3 Training of the Algorithms 

This section discusses training the various 

machine learning models to predict 

interference-prone channels in a 5G 

heterogeneous network. The training utilised 

the dataset comprising essential interference-

related parameters, such as transmit power, 

path loss, antenna gain, frequency reuse 

factor, user density, and SINR. The dataset 

underwent pre-processing, which included 

normalising feature values and addressing 

missing data as needed using the imputation 

technique. The training phase was designed to 

enhance each algorithm's performance 

according to its specific learning 

methodology. The Neural Network model 

employed a back-propagation algorithm for 

iterative weight updates aimed at minimising 

prediction error. The SVM was trained by 

projecting data into a high-dimensional space 

via a kernel function to create a hyperplane 

that optimised class separation. Similarly, the 

DT model was trained by recursively 

partitioning the dataset based on Gini 

impurity, facilitating optimal decision-making 

for interference classification. The Linear 

Regression model employed a least-squares 

optimisation technique to minimise the 

discrepancy between predicted and actual 

interference levels. Conversely, the K-NN 

model was trained by retaining the dataset and 

classifying new instances according to the 

predominant class of the nearest neighbours. 

Hyperparameters for each model were fine-

tuned through cross-validation to improve 

generalisation. The dataset was divided into 

training (70%) and testing (30%) subsets, 

ensuring performance evaluation occurred on 

unseen data. The training process utilised 

Python-based machine learning libraries, 

including TensorFlow, Scikit-learn, and Keras, 

contingent upon the algorithm. The models' 

performance was evaluated using metrics like 

accuracy, precision, recall, F1-score, and 

Mean Squared Error (MSE) for regression 

models. The results obtained from the training 

phase provided insights into the best-

performing model for predicting co-channel 

interference in 5G networks 

2.4 Resource Coordination Model  

To develop the resource coordination model 

for the management of interference, a 

Dynamic Channel Sensing and Queuing 

Transmission Model (DCSQTM) was 

proposed. The model consists of four major 

components, which are channel sensing, 

dynamic channel switching, queuing re-

transmission and adaptive transmission 

resumption as depicted in Figure 1. The 

channel sensing monitors channel availability 

through their frequency band; the dynamic 

channel switching allows for alternative 

reallocation of free channel frequency when 

interference is detected on available channels. 

The queue transmission is activated when no 

free channel is found; this initialises a 

temporal queue of 2ms (Alozie et al., 2022), 

instead of assigning a channel with potential 

interference to the user.   

 
Figure 1: The component of the proposed 

DCSQTM 

Channel sensing

Dynamic channel 
switching

Queuing transmission 

Adaptive transmisison 
resumption 
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Let the set of channels in the 5G network be 

defined as C= {c1, c2, , … … … … . . cn}. The 

probability that the channel ci is available at 

the time t is modelled using the Markov 

process in Equation 1. 

Pa(ci, t) =  Pb(ci, t − 1). Prelease(ci) +
 Pa(ci, t − 1). (1 − Poccupy(ci))  

 (1) 

Where Pa(ci, t) is the probability that ci is 

available at time t, Pb(ci, t) is the probability 

that ci is busy, Prelease(ci) is the probability 

that an occupied channel is released, 

Poccupy(ci) is the probability that an available 

channel gets occupied. While the probability 

that a channel is occupied at t time is given as 

a Poisson process in Equation 2; 

Poccupy (ci) = 1 - e−λiT       (2) 

Where λi  is the mean arrival rate of new 

transmission on ci channel, T is the sensing 

interval. The available channel is determined 

when Equation 2 (which is the SINR) model is 

less than the set threshold of 5dB. However, 

when the channel has interference, the signal 

is queued for the available channel. The 

probability that the signal is queued is given in 

Equation 3, while the expected queue time is 

defined in Equation 4. 

Pqueue(t) = Poccupy(ci) . (1 − Pa(ci, t)) (3) 

Tq =
1

μ−λ
                                                 (4) 

The expected queue waiting time Tq, arrival 

time is λ, and the rate of channel availability is 

μ. Once the channel becomes available 

(Pa(ci, t) > Pth) the signal is transmitted 

immediately. The models describe the 

dynamic channel selection and allocation 

mechanism to minimize interference. The 

model began with a set of channels in which 

the transmitter chooses an interference-free 

option. The availability of the channel at time 

t is modelled using the Markov process 

Pa(ci, t)depending on the channel state. If the 

channel is free, the probability that it is 

released is given as Prelease(ci), while the 

probability that the channel is occupied is =
 Poccupy(ci), while the mean arrival rate λi is 

an exponential function. The channel is usable 

when the SINR is below the set threshold of 

5db. The expected queuing time is 2ms. Once 

a channel is available, the queuing 

transmission is processed. 

While the Markov model in Equation 1 

estimates the availability of the channel based 

on transition probabilities, it failed to capture 

nonlinear interference patterns in a dynamic 

5G environment. In addition, the Poisson 

distribution in Equation 2 relies on a fixed 

arrival rate, which may not model the actual 

real-world variation. In contrast, machine 

learning, which has been trained for the 

prediction of interference, has been applied to 

optimise DCSQTM and provide a proactive 

interference management model for improved 

quality of service. Figure 2 presents the flow 

chart of the machine learning-based 

interference management model.  

 

Figure 2 presents the flow chart of the 

machine learning-based interference 

management model. The flow chart began 

with the initialization of the network 

parameters, setting of values for queuing time, 

and SINR. The machine learning-based 

prediction model was loaded and used to 

improve channel monitoring and selection of 

available channels upon detection as free from 

interference. The free channel is assigned for 

the management of user resources When a 

channel is predicted with interference 

potential, the user is queued and re-accessed 

until an interference-free channel is detected 

and then used to manage user equipment
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Figure 2: Flow chart of the machine learning-

based interference management model. 

.  

3. RESULT OF THE ML 

This section presents the results of the 

machine learning algorithm training. The 

training process first imported the dataset, 

which contains information on interference 

and non-interference records from the testbed, 

collected at varying periods of the day. The 

distribution of targets in the data was reported 

in Figure 3. 

 
Figure 3: Result of SINR target distribution  

Figure 3 presents the class distribution of 

targets for the data collection. The result 

showed that while the two classes are not the 

same, there is limited difference among them, 

thus suggesting that there is a balanced class 

in the dataset and the issues of classification 

bias will not occur when it is applied to train 

models for the detection of interference. In 

training machine learning, several algorithms 

such as DT, ANN, logistic regression, SVM 

and K-NN were trained. The training process 

was evaluated using metrics such as MAE, 

MSE and RMSE. The results obtained are 

reported in Figure 4. 

 
Figure 4: Training performance of ML 
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The performance of different machine 

learning algorithms in detecting interference 

was evaluated using key error metrics such as 

MAE, MSE, and RMSE are reported in Figure 

4. These metrics provide insights into the 

accuracy, stability, and overall reliability of 

each model. From the results, the ANN model 

reported an MAE of 0.0022, MSE of 0.0022, 

and RMSE of 0.0469. These results indicate 

that the ANN had minimal errors in predicting 

interference levels. The low RMSE value 

suggests that ANN generalises well across 

different interference conditions, making it a 

reliable choice for real-time interference 

detection. 

The SVM model showed moderate results 

with an MAE of 0.0052, MSE of 0.0052, and 

RMSE of 0.0721. While SVM performed 

reasonably well, it exhibited slightly higher 

error values compared to ANN, suggesting 

that it might struggle with certain interference 

conditions. This could be attributed to the 

difficulty in finding optimal decision 

boundaries in highly dynamic network 

environments like the urban environment. 

Interestingly, the Decision Tree model 

produced an MAE, MSE, and RMSE of 0.0, 

indicating perfect prediction accuracy on the 

dataset. However, such a result raises concerns 

about potential overfitting. Decision Trees are 

known for their tendency to memorise training 

data rather than generalising patterns. While 

this result appears ideal, we cannot adopt it as 

the best model because of the potential 

overfitting problem. 

Logistic Regression performed well, with an 

MAE of 0.0006, MSE of 0.0006, and RMSE 

of 0.0245. This suggests that the model 

effectively captured interference patterns 

while maintaining low errors. Despite its 

simplicity, Logistic Regression showed 

remarkable accuracy, making it a suitable 

choice for this work. The KNN model 

exhibited the highest error values among all 

models, with an MAE of 0.0394, MSE of 

0.0394, and RMSE of 0.1985. These results 

indicate that KNN struggled with interference 

prediction, likely due to its sensitivity to noisy 

data and distance-based dependency. The high 

RMSE value suggests that KNN may not be 

well-suited for real-time interference 

classification in dynamic 5G networks. Figure 

5 presents comparative accuracy in the correct 

prediction of interference. 

 
Figure 5: Comparative accuracy in prediction 

of interference 

Figure 5 compares the prediction accuracy of 

the five machine learning models trained for 

the detection of interference. From the results 

obtained, ANN reported 0.9978 accuracy, 

SVM reported 0.9948, DT reported 1.000, 

logistic regression reported 0.9994, and K-NN 

recorded 0.9606. From the results obtained, it 

was observed that while the models all 

recorded very good accuracy in predicting 

interference, DT will have a potential 

overfitting due to the ideal results reported. K-

NN recorded the least accuracy, while logistic 

regression recorded the most acceptable result 

for the correct prediction of interference on 

the 5G network. Figure 6 presents the 

confusion matrix for ANN performance. 
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Figure 6: Confusion matrix of the ANN          

Figure 6 presents the performance of the ANN 

model while trying to predict the behaviour of 

cells during interference and without 

interference. From the results, it was observed 

that the predicted model was able to correctly 

predict 2690 features of no-interference data 

on the network and then predicted 4 as 

interference. These results implied that the 

positive prediction value of the model in 

detecting interference is 99%, while the false 

detection rate is less than 1%. For the 

prediction of the network performance during 

interference, it was observed that out of the 

2303 features of interference data, only 7 

features were wrongly classified, while 2299 

features were correctly classified as 

interference on the network. Figure 7 presents 

the confusion matrix of the SVM model. 

 
Figure 7: Confusion matrix of the SVM model 

Figure 7 shows the confusion matrix of the 

SVM model. From the results, it was observed 

that out of the 2697 features of network data 

without interference, the results obtained 

showed that 2681 of the features were 

correctly predicted as normal network 

behaviour without interference, while 10 of 

the features were wrongly reported as 

interference. The interference class contained 

2303 features of interference data; however, 

the results reported 2293 features of 

interference, which were correctly detected, 

while 16 features were wrongly classified. 

Figure 8reports the confusion matrix of the 

DT model.  

Figure 8: Confusion matrix of DT 

Figure 8 shows the confusion matrix of the 

DT model predicting interference and non-

interference on the network. In the results, it 

was observed that the total 2697 features of 

the steady network were correctly classified, 

while 2303 features used to test for 

interference were correctly predicted. Figure 9 

presents the logistic regression confusion 

matrix.  
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Figure 9: Confusion matrix of logistic 

regression 

From the results in Figure 9, it was observed 

that 2700 features of the network without 

interference were applied to test the logistic-

based model. In the results, only 3 features 

were wrongly classified, while 2679 were 

correctly classified. Out of the 2300 features 

of interference used to test the model, all were 

correctly predicted as interference. Figure 10 

also reports the result of the K-NN model 

applied for the detection of interference and 

normal network conditions. 

 
Figure 10: Confusion matrix of the K-NN 

model 

Figure 10 presents the confusion matrix of the 

K-NN model applied for the prediction of 

interference. In the result, it was observed that 

2606 features of normal packets were 

correctly classified, while 106 features were 

wrongly classified. For the prediction of 

interference, it was observed that 2288 

features used to test the model recorded 2197 

features as interference and then 91 features as 

wrong classification. From the results 

obtained generally, the logistic regression 

model was selected as the most reliable and 

then applied for system integration and tested 

through simulation. 

4. CONCLUSION 

This study worked on developing a machine 

learning-based interference detection and 

management system for 5G heterogeneous 

networks. In the study, a variety of machine 

learning algorithms such as Artificial Neural 

Networks (ANN), Support Vector Machine 

(SVM), Decision Tree (DT), Logistic 

Regression, and K-Nearest Neighbours (K-

NN)were trained using a dataset containing 

key interference-related features such as 

transmit power, path loss, antenna gain, user 

density, frequency reuse factor and Signal-to-

Interference-plus-Noise Ratio (SINR). Each 

algorithm was trained and evaluated, and the 

ANN algorithm emerged as the most effective, 

reporting low error rates (MAE = 0.0022, 

RMSE = 0.0469) and high prediction accuracy 

(99.78%) while maintaining generalisation 

across interference conditions. Furthermore, 

Logistic Regression also performed 

remarkably well with minimal error and high 

accuracy. Although the Decision Tree model 

achieved a training accuracy (100%).  

In addition to model training, the study 

proposed a Dynamic Channel Sensing and 

Queuing Transmission Model (DCSQTM) to 

manage interference proactively. The model 

includes key components channel sensing, 

dynamic channel switching, queue 

retransmission, and adaptive resumption 

underpinned by probabilistic models (Markov 

and Poisson) to estimate channel availability 

and queuing delay. To address the limitations 
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of traditional stochastic models in capturing 

dynamic and nonlinear interference, machine 

learning models were integrated into the 

DCSQTM framework to optimise channel 

selection and improve quality of service. 
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