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Abstract  

This study presents a Deep Neural Network (DNN) model for short-term load forecasting for 

mitigation of losses in power system. The model developed in this study was trained using historical 

power consumption data from the Emene Injection Substation of the Enugu Electricity Distribution 

Company (EEDC) which underwent pre-processing phase that comprised of cleaning, normalization 

and splitting into training (80%), testing (10%) and validation (10%) sets. Various DNN 

architectures were evaluated through different numbers of hidden layers and activation functions to 

determine the optimal model. The model training process employed the Adam optimizer and Mean 

Squared Error (MSE) loss function, with dropout regularization to prevent overfitting. 

Implementation was carried out on Google Colab using the cloud-based GPU acceleration for 

computational execution. The results of the implementation demonstrated that the 5-layer DNN 

model achieved superior performance by yielding an MSE of 0.0021 and an R² score of 0.92. The 

study identified that deep learning-based forecasting models can significantly enhance power grid 

management by improving loss mitigation through load forecasting.  

Keywords: Power Loss; Load Forecasting; DNN; Enugu Electricity Distribution Company 

(EEDC); Emene Injection Substation. 

 

1. INTRODUCTION 

The load side of a modern power system 

requires a constant supply of electricity. This 

calls for an accurate understanding of how to 

forecast load demand in the present and the 

future with the least degree of mistake. In 

order to do this, researchers and scientists 

have been working to create the most effective 

and ideal state-of-the-art technique for load 

forecasting, which is a technique for 

estimating future power consumption need. 

Numerous choices and procedures, including 

dispatch, unit commitment, fuel allocation, 

loss minimisation, and offline network 

analysis, are managed by load forecasting 

(Bunn, 2000). According to Al-Mamun et al. 

(2020), this provides the power utility firm 

with a sense of the future demand of its 
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customers as well as sufficient time to reduce 

the gap between generation capacity and load 

demand. 

According to Orovwode et al., (2020) power 

loss in electrical networks is classified into 

technical and non-technical losses. Technical 

losses arise due to inherent inefficiencies in 

power transmission and distribution, such as 

resistance in transmission lines and 

transformer inefficiencies (Khan et al., 2018; 

Upreti et al., 2017). Then, non-technical losses 

on the other hand, are caused by issues such as 

electricity theft, metering inaccuracies, and 

billing errors (Hernandez et al., 2015; 

Kirankumar et al., 2013). Therefore, these two 

categories of losses contribute to economic 

losses for power companies and reduce the 

efficiency of electricity supply and without an 

effective load forecasting system, utilities may 

struggle to match supply with demand, leading 

to excessive energy losses, voltage 

fluctuations and power outages 

(Balasubramanian and Balachandra, 2021). 

Load forecasting can be categorized into 

short-term, medium-term and long-term 

forecasting. At first, Short-Term Load 

Forecasting (STLF) can be used to predict 

electricity demand for hours to a few days 

ahead (Lijie and Jánošík, 2024) while, 

Medium-Term Load Forecasting (MTLF) 

covers weeks to months, this type helps in 

maintenance planning and can be applied for 

tariff adjustments (Maryam et al., 2024). 

Whereas, a Long-Term Load Forecasting 

(LTLF) is usually used to project demand for 

years into the future. Making it essential for 

infrastructure development in a locality or 

region and investment planning of a country 

(Waheed et al., 2024; Uwimana et al., 2023). 

Traditional forecasting methods such as time 

series analysis and regression models have 

been widely used in the past, however, the 

growing complexity of modern power systems 

has led to the adoption of Artificial 

Intelligence (AI) techniques which includes 

Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs) and Deep Learning 

(DL) models (Tulli, 2020; Hasan et al., 2025; 

Krishnamurthy et al., 2024). These techniques 

offer improved accuracy by capturing 

complex demand patterns. 

Traditional statistical methods such as 

Autoregressive Integrated Moving Average 

(ARIMA) (Chen et al., 1995) and regression 

models, while effective in some cases, 

struggle to capture nonlinear relationships in 

electricity consumption patterns. As a result, 

Machine Learning (ML) and DL approaches 

have emerged as powerful tools for improving 

load forecasting accuracy, enabling utilities to 

manage energy distribution more efficiently 

and minimize power losses (Mansoor et al., 

2021; Syed et al., 2021). Machine learning 

techniques, including SVMs, Random Forests 

(RF) and gradient boosting models, have been 

widely applied in load forecasting due to their 

ability to analyze large datasets and uncover 

complex patterns (Ahmad and Chen, 2020). 

These models can incorporate various factors 

influencing electricity demand, such as 

weather conditions, time of day, economic 

indicators, and consumer behaviour. Unlike 

traditional models that rely on predefined 

mathematical relationships, ML algorithms 

learn from historical data and adapt to new 

trends, making them more robust in dynamic 

power systems (Zheng et al., 2020). 

DL, a subset of machine learning, has further 

revolutionized load forecasting by utilizing 

ANNs to model intricate dependencies in 
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energy consumption data (Massoudi et al., 

2021). Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks 

(RNNs) (Eskandari et al., 2021), including 

Long Short-Term Memory (LSTM) (Liu et al., 

2023; Veeramsetty et al., 2021) and Gated 

Recurrent Units (GRUs), are particularly 

effective for time-series forecasting tasks 

(Sheng et al., 2021; Yin et al., 2021). LSTM 

networks, for instance, excel in capturing 

long-term dependencies in sequential data, 

making them well-suited for predicting 

electricity demand based on past consumption 

patterns (Guo et al., 2021). Deep learning 

models can process vast amounts of real-time 

data from smart grids, allowing for highly 

accurate and adaptive forecasting (Syed et al., 

2021; Veeramsetty et al., 2022). 

The application of ML and DL in load 

forecasting offers several benefits. First, these 

techniques enhance the accuracy of demand 

predictions, enabling utilities to optimize 

power generation and distribution while 

minimizing transmission losses (Ning et al., 

2023; Almalaq and Edwards, 2017). Second, 

they improve demand-side management by 

identifying peak demand periods and allowing 

for better scheduling of energy resources. 

Third, deep learning models facilitate the 

integration of renewable energy sources by 

predicting fluctuations in solar and wind 

power generation, helping maintain grid 

stability (Syed et al., 2021). Lastly, AI-driven 

forecasting enhances fault detection and 

anomaly identification, preventing disruptions 

and improving overall grid reliability (Zhang 

et al., 2025). Hence, this study proposes the 

application of deep learning algorithm for loss 

mitigation in power system through load 

forecasting. The primary objectives of the 

study are to: 

i. Collect data from Emene Injection 

substation of Enugu Electricity 

Distribution Company (EEDC) 

distribution network 

ii. Preprocess the data through handling 

of missing values, normalization using 

Min-Max scaling and splitting the data 

into training, testing and validation 

sets 

iii. Adopt a 5-layered Deep Neural 

Network (DNN) architecture trained 

using the collected data for load 

forecasting implementation 

iv. Evaluate the performance of the model 

and report the results of the model 

implementation 

The integration of machine learning and deep 

learning in load forecasting represents a 

significant advancement in power system 

management and the use of predictive models 

can enhance operational efficiency, reduce 

energy losses and support the transition to a 

more sustainable energy future in power 

systems.  

2. RESEARCH METHOD 

The method applied in this study involves the 

use of power load data collected to train the 

proposed deep learning algorithm for load 

forecasting. The proposed deep learning 

model is based on Deep Neural Network 

(DNN) algorithm which is trained using the 

collected data for the analysis of power and 

environmental behaviour for load forecasting 

the power system. The trained model is further 

evaluated and analysed, then the result of the 

analysis is presented in the study to ascertain 
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the performance ability of the model for load 

forecasting to minimize loss in the power 

system.  

2.1 Data Acquisition 

The data used for the system is the Emene 

Injection substation of Enugu Electricity 

Distribution Company (EEDC) distribution 

network covering Enugu zone only. Located in 

Enugu State of Nigeria, the test system is a 

three-wire delta feeder operating at a nominal 

voltage of 11 kV. The system loads consist of 

a mix of constant PQ, constant current and 

constant impedance. Figure 3.1 depicts the 

single line diagram of the Emene distribution 

system used in this thesis. The system 

corresponds to a suburban Medium Voltage 

distribution network. In this radial distribution 

network, the substation is equipped with an 

on-load tap changer and shunt capacitors 

banks whose power can be discretely 

controlled. The transformer has a rated voltage 

ratio of 33/11 kV and a rated average power of 

15MVA. The capacitor banks at the substation 

have a rated power of 1000KVar with steps of 

200KVar. The total feeder load is about 45 

KVA at a power factor of 0.875. Being 

balanced, all the system loads are constant PQ 

Per unit values. 

Typically, the power systems consist of 

different voltage levels interconnected by 

means of transformers. In order to simplify the 

analysis of these, the base parameters in per 

unit were chosen; in terms of which, all 

systems quantities are defined. As a result, the 

system reduces to a set of impedances and the 

different voltage levels disappear. The 

parameters from the Emene injection 

substation in Enugu (EEDC Distribution 

Network) is shown in Table 1 

 [  
This study is limiting to 30 buses. The 

collected data for these 30 buses are as stated 

in Table 2. 

2.2 Data Pre-processing 

The data pre-processing step applied in this 

study involves cleaning and transforming the 

raw power load data from the Emene Injection 

Substation to ensure compatibility with the 

DNN model. Missing values in the load flow 

as shown in Table 2 and time-series records as 

in Table 1 are either interpolated or discarded 

while numerical features like voltage (p.u.), 

current (A) and load (MW) are normalized 

using Min-Max scaling to a [0,1] or [-1,1] 

range for stable training. The dataset is then 

split into training (80%), validation (10%) 

and test (10%) sets, with the input features and 

target variable clearly defined. This structured 

preprocessing ensures the DNN receives 

consistent and scaled inputs for effective 

learning and generalization. 

2.3 The Proposed Deep Neural Network 

(DNN) Algorithm  

The proposed deep learning algorithm for this 

work is the Deep Neural Network (DNN). 

However, (Alemu et al., 2018; Yotov et al., 

2023; Sietsma and Dow, 1988; Setiono, 1997) 

revealed that determining the optimal number 

of neurons in the hidden layer to solve a 

specific problem poses a challenge in multi-

layered neural network models. Torres et al. 

(2004) and Emmert (2006) after 

experimenting with different neural network 

architectures revealed that topology has a 

major influence on the performance of neural 

network model. While using deep multi 

layered architecture (Rozycki et al., 2015) has 
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the potential to improve the performance of 

neural network, but are prone to over-fitting 

when data size is low, high computational 

requirements, resource intensive among other 

challenges. Identifying the right architecture 

for a particular problem has remained a major 

challenge over time and it has been concluded 

that the there is no defined standard to model 

neural network.  The architecture of the DNN 

model for the study is presented in Table 3.  

Table 3 presents the neural network 

architecture used for this work. The input 

layers defined by the data attributes are 

connected to the first hidden layer with 256 

neurons and has ReLU as the activation 

function. The second hidden layer has 128 

neurons and ReLU activation, while the third 

hidden layer has 64 neurons and ReLU 

activation function. In the four and fifth 

hidden layers with 32 and 16 neurons 

respectively, Tan-H was used as the activation, 

before the final output layer attacked with 

sigmoid function to facilitate the binary 

classification output. Training of the neural 

network took an experimental approach 

considering Table 3 as the first architecture, 

then Table 4 as the second architecture with 

three hidden layers and ReLU, Table 4 

reported the model of the DNN with three 

hidden layers and Tan-h, while the Table 6 

model the DMNN with three hidden layers 

and different activation. 

The Table 4 to 6 presented the different DNN 

we will train within this work using the 

collected data of Emene Injection substation 

of Enugu Electricity Distribution Company 

(EEDC) distribution network. To train the 

DNN, the data was split into training, test and 

validation sets in the ratio of 80:10:10 

respectively and feed to the different networks 

with architecture with feed to the model in 

Table. During training, dropout regularization 

was applied to the neurons to address issues of 

over-fitting. 

2.3 Training of the Proposed DNN 

Algorithm 

The training process begins by feeding the 

pre-processed data into the selected DNN 

architecture then the model undergoes forward 

propagation where input features pass through 

each hidden layer, undergoing transformations 

by integration of weights, biases and 

activation functions. The output layer of the 

model produces a load forecast, which is 

compared to the actual values using Mean 

Squared Error (MSE) loss function. This loss 

quantifies the model’s prediction accuracy and 

guides the optimization process. To minimize 

the loss, backpropagation and gradient descent 

are employed as presented in Figure 1.  

The Adam optimizer adjusts the model’s 

weights iteratively, leveraging the calculated 

gradients to improve predictions. During 

training, dropout regularization is applied 

between layers as shown in Figure 1 to 

prevent overfitting by randomly deactivating 

neurons, forcing the network to learn robust 

features. The validation set monitors 

performance after each epoch, and early 

stopping halts training if the validation loss 

plateaus, ensuring the model generalizes well 

without unnecessary overtraining. The process 

repeats for multiple epochs until convergence 

where the loss stabilizes at a minimum or 

optimal level. The best-performing model is 

selected based on the lowest validation loss 

and evaluated on the test set using metrics like 

RMSE. This training process ensures the DNN 
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accurately forecasts power load enabling 

reliable grid management with least possible 

power loss for the Emene substation. 

 
Figure 1: Flowchart of the DNN Model 

Training 

3. MODEL IMPLEMENTATION 

PLATFORM 

The implementation of the DNN model 

training for load forecasting was carried out 

on Google Colab development environment. 

The environment leverages on its cloud-based 

GPU acceleration to enhance computational 

efficiency where the process began with data 

preprocessing. The DNN architecture, 

featuring multiple hidden layers with ReLU 

and Tanh activations was constructed using 

TensorFlow with dropout layers added to 

mitigate overfitting. The model was compiled 

with the Adam optimizer and MSE loss 

function then the model is trained with early 

stopping. Performance was monitored using 

validation loss, and the final model was 

evaluated on unseen test data, achieving a low 

RMSE, indicating accurate load predictions. 

Google Colab’s free GPU access and seamless 

integration with Google Drive streamlined the 

workflow which enables efficient 

experimentation with different DNN 

architectures. The platform’s collaborative 

features allowed for easy sharing and 

reproducibility of results.  

4. RESULTS AND DISCUSSION 

The performance evaluation of the 

implemented system was conducted using 

three key metrics: MSE, Mean Absolute Error 

(MAE) and R² Score. The trained DNN 

architectures presented between Table 3 to 6 

were evaluated on the test dataset, and their 

performance metrics are summarized in Table 

7. The results in Table 7 indicate that the DNN 

model with five hidden layers outperformed 

other configurations in terms of predictive 

accuracy. Among the different architectures 

tested, the 5-layer DNN model achieved the 

lowest MSE of 0.0021 and MAE of 0.038. 

The lower MSE as shown in Figure 2 value 

from the results signifies that the squared 

differences between the predicted and actual 

values were minimal, while the low MAE 

result in Figure 3 confirms that, on average, 

the absolute differences between the predicted 

and actual values remained small.  
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Table 1: Load Data from Injection Substation Emene 
MARCH 2016 TR1 7.5MVA TR2 7.5MVA EMENE 2 EMENE 3 

ENERGY(MW) 3.50mw 4.7mw 3.50mw 4.7mw 

CURRENT(AMP) 231 310.2 231 310.2 

VOLTAGE(v) 11.9 11.09 11.9 11.09 

ENERGY(MW) 0.4mw 1.7mw 0.4mw 1.7mw 

CURRENT(AMP) 26.4 112.2 26.4 112.2 

VOLTAGE(V) 12.0 11.08 12.0 11.08 

August 2016 TR1 7.5 MVA TR2 7.5 MVA EMENE 2 EMENE 3 

ENERGY(MW) 3.50mw 4.7mw 3.50mw 4.7mw 

CURRENT(AMP) 231 310.2 231 310.2 

 VOLTAGE 11.9 11.09 11.9 11.09 

ENERGY(MW) 0.4mw 1.7mw 0.4mw 1.7mw 

CURRENT(AMP) 26.4 112.2 26.4 112.2 

VOLTAGE(V) 12.0 11.08 12.0 11.08 

NOV   2016 TR1 7.5 MVA TR2 7.5 MVA EMENE 2 EMENE 3 

ENERGY(MW) 4.20MW 6.85MW 4.20MW 6.85MW 

CURRENT(AMP) 277.2 452.1 277.2 452.1 

ENERGY(MW) 0.5MW 2.69MW 0.5MW 2.69MW 

CURRENT 33 177.54 33 177.54 

VOLTAGE(V) 11.1 10.9 11.1 10.9 
[  
Table 2: Empirical Load Flow Data for 33/11KV Collected from EEDC. 
Bus No Bus Code Voltage (p.u) Angle (º) Load (MW) Generation (MW) 

1 1 1.06 0.0 0.0 0.0 

2 2 1.043 0.0 21.70 40 

3 0 1.0 0.0 2.4 0 

4 0 1.06 0.0 7.6 0 

5 2 1.01 0.0 9.4 0 

6 0 1.0 0.0 0.0 0 

7 0 1.0 0.0 22.8 0 

8 2 1.01 0.0 30.0 0 

9 0 1.0 0.0 0.0 0 

10 0 1.0 0.0 5.8 0 

11 2 1.082 0.0 0.0 0 

12 0 1.0 0.0 11.2 0 

13 2 1.071 0.0 0 0 

14 0 1 0.0 6.2 0 

15 0 1 0.0 6.8 0 

16 0 1 0.0 3.5 0 

17 0 1 0.0 9.0 0 

18 0 1 0 3.2 0 

19 0 1 0 9.5 0 

20 0 1 0 2.2 0 

21 0 1 0 17.5 0 

22 0 1 0 0 0 

23 0 1 0 3.2 0 
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24 0 1 0 8.7 0 

25 0 1 0 0 0 

26 0 1 0 3.5 0 

27 0 1 0 0 0 

28 0 1 0 0 0 

29 0 1 0 2.4 0 

30 0 1 0 10.6 0 

Table 3: Architecture of the DNMM 

Layer Number of 

Neurons 

Activation 

Function 

Inputs Output 

Input Layer 22 N/A Dataset features  Layer 1 Outputs 

H 1 256 ReLU Input layer Layer 2 Outputs 

H 2 128 ReLU Hidden Layer 1 Layer 3 Outputs 

H 3 64 ReLU Hidden Layer 2 Layer 4 Outputs 

H 4 32 Tan-h Hidden Layer 3 Layer 5 Outputs 

H 5 16 Tan-h  Hidden Layer 4 Output Layer 

Output Layer Output Layer 1 (MSE) Hidden Layer 5 (0-1) 

Table 4: Architecture with 3 hidden layer and ReLU 

Layer Number of Neurons Activation Function Inputs Output 

Input Layer 22 N/A Dataset features  Layer 1 Outputs 

H 1 256 ReLU Input layer Layer 2 Outputs 

H 2 128 ReLU Hidden Layer 1 Layer 3 Outputs 

H 3 64 ReLU Hidden Layer 2 Output Layer 

Output 

Layer 

1 (MSE) Sigmoid Hidden Layer 3  (0-1) 

Table 5: Architecture with 3 hidden layer and Tan-H 

Layer Number of Neurons Activation Function Inputs Output 

Input Layer 22 N/A Dataset features  Layer 1 Outputs 

H 1 64 Tah Hidden Layer 1 Layer 2 Outputs 

H 2 32 Tan-h Hidden Layer 2 Layer 3 Outputs 

H 3 16 Tan-h  Hidden Layer 3 Output Layer 

Output Layer 1 (MSE) Sigmoid Hidden Layer 5  (0-1) 

Table 6: Architecture with 3 hidden layer and different activation function  
Layer Number of 

Neurons 

Activation Function Inputs Output 

Input Layer 22 N/A Dataset features  Layer 1 Outputs 

H 1 256 ReLU Input layer Layer 2 Outputs 

H 2 128 Tan-h Hidden Layer 1 Layer 3 Outputs 

H 3 64 Tan-h  Hidden Layer 2 Output Layer 

Output Layer 1 (MSE) Sigmoid Hidden Layer 5  (0-1) 

Table 7: Performance Metrics for Different DNN Architectures 

Model Architecture MSE MAE R² Score 

5 hidden layers, ReLU & Tanh 0.0021 0.038 0.92 

3 hidden layers, ReLU 0.0028 0.045 0.89 

3 hidden layers, Tanh 0.0032 0.048 0.86 

3 hidden layers, Mixed Activation 0.0025 0.041 0.90 
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Figure 2: MSE Results 

 

 
Figure 3: MAE Results 

Additionally, the R² score of 0.92 shown in 

Figure 4 for the 5-layer DNN model 

demonstrates that 92% of the variance in the 

dataset was explained by the model. This high 

coefficient of determination indicates strong 

predictive capability and suggests that the 

model effectively captures the relationship 

between input features and target values.  

 
Figure 4: The R² Results  

A higher R² score presented in Figure 4 means 

that the model's predictions closely align with 

actual observations which makes it a reliable 

model for forecasting. The model using the 

ReLU activation function achieved better 

accuracy than those using the Tanh or mixed 

activation functions. Specifically, the ReLU-

based model presented a lower MSE and 

MAE which indicates that its predictions were 

closer to actual values. However, the 

performance gap between the 5-layer and 3-

layer models highlights the significance of 

network depth in improving prediction 

accuracy.  

Overall, the comparative results of the 

different DNN architectures presented in this 

section clarifies the importance of selecting an 

optimal model structure and activation 

function for performing regression tasks. 

These findings further indicates that the 

application of deeper networks with 

appropriate activation functions like ReLU 

can significantly enhance model prediction 

performance. These results reinforce the 
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effectiveness of deep learning in predictive 

modelling and demonstrate the value of tuning 

network parameters for optimal performance. 

5. CONCLUSION 

This study presents a Deep Neural Network 

(DNN) model for power loss mitigation 

through load forecasting. The model presented 

in the study was trained using historical power 

load data collected from the Emene Injection 

Substation of the Enugu Electricity 

Distribution Company (EEDC). The data went 

through preprocessing steps that included data 

cleaning, normalization, and dataset splitting 

in the ratio of 80% for training, 10% for 

validation and 10% testing. The model was 

trained on Google Colab development 

environment which is a cloud-based GPU 

platform for execution of Python code. 

Different DNN architectures were explored by 

incorporating varying numbers of hidden 

layers and activation functions to determine 

the most effective model for accurate load 

forecasting. The evaluation results in the study 

showed that the 5-layer DNN model with a 

combination of ReLU and Tanh activation 

functions outperformed other architectures, 

achieving the lowest MSE (0.0021) and the 

highest R² score (0.92).  

The comparison of different DNN 

architectures revealed that deeper networks (5 

layers) yield better performance than 

shallower architectures, provided that 

overfitting is properly controlled through 

regularization techniques. These results 

identified that there is a strong correlation 

between predicted and actual power load 

values. The findings of this study demonstrate 

that DNNs are highly effective for power load 

forecasting, providing accurate predictions 

that can support efficient grid management 

and minimize power losses. And by adopting 

such data-driven predictive models, power 

distribution companies can improve demand 

planning, resource allocation and grid 

stability, ultimately enhancing energy 

efficiency and reliability.  
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