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Abstract  

In the world of communication networks, which provide services to a variety of highly demanding 

applications, effective resource allocation is essential to guaranteeing maximum efficiency and user 

experience. This study presents the use of Long Short-Term Memory (LSTM)-based Radio Resource 

Management (RRM) approach for network optimization. Grid Search Optimization (GSO) is used to 

optimise the LSTM model's hyper parameter tuning, guaranteeing peak performance in dynamic 

network settings. The system uses guard interval insertion and frequency interleaving to reduce 

Inter-Symbol Interference (ISI) and burst errors. According to simulation results, the LSTM-RRM 

technique outperforms the Dynamic Radio Resource Management (DRRM) approach in terms of 

dual connectivity, throughput, and fairness. The effectiveness of the suggested approach in allocating 

resources was demonstrated by the up to 50% increase in User Equipment (UE) throughput and the 

12% increase in dual connectivity for 30 UEs. The LSTM-RRM system, which was implemented 

with MATLAB, demonstrated scalability, robustness, and efficacy in mitigating congestion and 

enhancing Quality of Service (QoS) for communications between machines and humans. This study 

opens the door for more advancement in network performance optimisation by demonstrating the 

potential of LSTM and machine learning approaches for resource management optimisation in next-

generation networks. 

Keywords: Radio Resource Management; Resource Allocation; Machine Learning; LSTM; 

GSO; Inter-Symbol Interference (ISI) 

 

1. INTRODUCTION 

The advancement of the Long-Term Evolution 

(LTE) and upgraded cellular systems is the 

foundation of contemporary mobile broadband 

services. Low cost per bit, high spectrum 

efficiency, fast data rate, and high system 

capacity are the advantages offered by LTE 

(Condoluci et al., 2015; De La Fuente et al., 

2017). The requirements of cellular networks 

are met by heterogeneous wireless networks 

(LTE) (Pramudito and Alsusa, 2013). The 

heterogeneous networks' small and macro 

cells are used to meet the need for broadband 

mobile traffic (Wang et al., 2016; Soret and 

Pedersen, 2014). LTE direct transmission is 

another name for device-to-device (D2D) 

communication (Belleschi et al., 2015).These 

D2D communication systems can reduce 

energy consumption and maximise the use of 

spectrum resources. Peer-to-peer and location-

based services and apps are supported by D2D 

(Naqvi et al., 2018).  

One node is installed between User 

Equipment (UE) and upgraded Node B (eNB) 

in the third generation collaboration project 
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LTE. According to Kaddour et al. (2014), the 

radio network controller in the eNB is capable 

of performing mobility, traffic balancing, and 

radio resource management (RRM). 

Additionally, in order to achieve appropriate 

performance, which is known as self-

optimization in LTE, the eNB and UE are 

utilised to adjust the system parameters 

(Tiwana et al., 2014). In LTE-Advanced (LTE-

A) systems, the reduced cell edge capabilities 

are thought to be the limitation. The LTE's 

capacity is impacted by user interference, 

which results in aggressive frequency. 

Complete isolation between various parallel 

services and signalling overhead have an 

impact on an LTE's random-access network 

(Elgendy et al., 2018; Tseliou et al., 2015). 

Cloud radio access networks, better interior 

coverage, machine-to-machine and human-to-

human communications, reduced latency, 

lower energy consumption, and huge multiple 

input and multiple output are some of the 

emerging features and trends of 5G LTE-A 

(Saddoud et al., 2020). 

The creation of 5th Generation (5G) mobile 

communication networks meets the 

anticipated needs of contemporary 

communication, including a large number of 

connected devices with different service 

needs, high traffic volumes, and enhanced 

user experience quality (Benzaid et al., 

2020).In order to enhance the 5G network's 

performance, intelligent learning techniques 

are being developed. A model-free, data-

driven method for reducing the complexity of 

available training inputs and outputs is called 

deep learning (DL). By training simulated data 

offline and providing the results utilising well-

trained networks during online procedures, 

resource allocation difficulties are eliminated 

(Jo et al., 2021). One of the main problems 

with the RRM is thought to be the 

interdependency of the OSI stack levels. To 

get the best performance for the stack layer, a 

suitable cross-layer optimisation strategy is 

needed. Furthermore, several RRM 

components must be arranged in the same 

equipment for access methods with multiple 

interfaces (Cai et al., 2011).The following are 

examples of traditional RRM techniques: 

pathloss-threshold-based component carrier 

and cluster configuration algorithm (Wang et 

al., 2015), carrier aggregation-based RRM 

(Rostami et al., 2017), and hybrid approach 

(Haddad et al., 2011).  

Optimisation is now possible at previously 

prohibitive levels of complexity because to 

recent developments in machine learning 

(ML). Significant performance gains have 

resulted from this, encouraging the application 

of ML methods like neural networks in a 

variety of domains. Using machine learning 

(ML) to improve wireless network 

performance began with 5G and will be 

crucial to advancing zero-touch setup and 

administration, which will allow 6G networks 

to self-optimize and self-configure (Zhang et 

al., 2019).  

Many factors that are difficult to predict or 

infer and are not always known when 

decisions need to be made affect how a 

wireless network operates. Furthermore, 

because wireless networks are made up of 

several radio access technologies and modules 

that interact with one another, must meet a 

variety of changing needs, and must swiftly 

adjust to changes, they are becoming more 

complicated and heterogeneous. This makes 

the issue of optimising wireless systems' 

performance in real time unfeasible for 
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conventional methods. On the other hand, ML 

tools can manage extremely dynamic wireless 

networks and make more intelligent 

judgements, such as based on anticipated 

future traffic patterns, because of their 

capacity to handle extremely complicated 

systems (Bui and Widmer, 2018).Based on 

these findings, this study proposed a modular 

Machine Learning (ML) architecture for 

wireless network optimisation that makes it 

possible to easily incorporate machine 

intelligence into both new and pre-existing 

network operations. In particular, we use ML 

to maximise network performance. 

2. LITERATURE REVIEW 

The Distributed RRM (DRRM) for 5G multi-

RAT multi-connectivity networks was 

developed by Monteiro et al. (2018). Enabling 

strong interoperability between LTE and 5G 

supports the latter's extended range. The 

optimisation problem is used to raise the 

minimal UE throughput. Only a reduction in 

calculation effort and signalling overhead was 

accomplished by this technique. Rukmini 

(2020) introduced the LTE network over the 

QoS in conjunction with the RRM, and a 

greater transmission rate was not attained 

when the BS was alone taken into account as 

the reference signal received power Prasad. 

The LTE network's consumers were given the 

best possible resource allocation through the 

implementation of QoS with optimal 

confederation-aware technology, specifically 

QOC-RRM. The recurrent deep neural 

network was then used to prioritise the 

operators in the LTE network. Additionally, 

the chaotic weed optimisation method 

provided the queuing criterion information in 

order to complete the routing procedure 

required to transmit data. The priority value 

was then used to arrange the users' priorities 

for the resources that were available. 

However, only fourth-generation systems 

were used to analyse this RRM.  

The RRM was developed by Pramudito and 

Alsusa (2014) to improve soft-frequency 

reuse-based LTE's downlink performance. 

Dynamically assigning the RRM in a 

distributed and centralised way at the network 

improves the system's spectral efficiency. The 

network develops the confederation notion 

when the allocation is completed. This 

confederation idea is intended to minimise the 

overhead when a routing algorithm is paired 

with a confederation type network.  

The predictive RRM (PRRM) system for next-

generation wireless networks (NGWNs) was 

developed by Ali et al. (2018). Furthermore, 

mobility management and resource control 

difficulties are resolved while meeting Quality 

of Service (QoS) standards. To maximise 

performance over heterogeneous networks, the 

IEEE 802.21 Media Independent Handover 

(MIH) protocol is employed. The coordination 

between the two aforementioned network 

properties is provided by this MIH protocol. 

The handover procedure, which consists of 

three stages, resource allocation estimation, 

radio resource allocation decision, and 

allocation notification, is also integrated with 

the PRRM. 

In order to carry out RRM in the Integrated 

Access and Backhaul (IAB) networks, Sande 

et al. (2021) introduced Deep Reinforcement 

Learning (DRL). The IAB network's access 

side congestion is reduced by using the 

developed DRL-based RRM. In order to give 

users adequate resources, the trans mission 
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buffer is initialised to monitor the congestion 

rate of the IAB node. Furthermore, the 

restricted problem resulting from the power 

consumption issue is transformed through the 

application of Markov decision process and 

dynamic power management. Nonetheless, 

this developed DRL-based RRM's total 

complexity is comparable to that of the current 

method. 

3. RESEARCH METHODOLOGY 

The bandwidth and power allocation for the 

targeted UEs is done using the LSTM-based 

RRM. While hyperparameter tweaking is 

accomplished with GSO, the use of LSTM in 

the 5G context simplifies decision-making. In 

order to reduce burst faults across the 

network, frequency interleaving is also being 

researched in the context of 5G. In order to 

reduce Inter-Symbol Interference (ISI), guard 

level insertion is then activated prior to data 

transmission. Figure 1 displays the LSTM-

RRM method's block diagram. 

 
Figure 1. Block diagram of LSTM-RRM 

method 

Radio access in a conventional LTE is 

primarily reliant on Orthogonal Frequency 

Division Multiple Access (OFDMA) in the 

downlink and Single-Carrier Frequency 

Division Multiple Access (SC-FDMA) in the 

uplink. The radio frame structure used by SC-

FDMA and OFDMA is identical, which 

facilitates the usage of channel subdivision. 

Channels are often divided into radio 

resources that include domain time and 

frequency. In the frequency domain, the 

channel bandwidth is adjusted between 1 and 

20 MHz. Sub-channels of 12 sub-carriers of 

15 kHz make up the remaining 180 kHz of the 

total available bandwidth, which includes 1.4, 

3, 5, 10, 15, and 20 MHz. A Resource Block 

(RB) is the smallest allocation unit for a radio 

resource.The single RB in this case has a 

frequency domain of 180 KHz and a time 

domain of 1 ms. In the time domain, radio 

resources are divided into Transmission Time 

Intervals (TTI), sometimes called sub-frames, 

which have a length of one millisecond. Ten 

TTI are used to create one frame. There are 

two 0.5 ms slots in each TTI, with seven 

symbols in each slot. The LTE-A taken into 

consideration in the 5G context is known as 

5G LTE-A in this LSTM-RRM approach. A 

single cell with a single eNB and a collection 

of mobile UEs are included in this system 

architecture. As seen in Figure 2, the eNB is 

situated in the middle with UE. 
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Figure 2:Model of eNodeB Network System 

(Balmuri et al., 2022) 

There are two distinct user traffics on this 5G 

LTE-A network: human-to-human (H-H) and 

machine-to-machine (M-M) interactions. 

Numerous resource blocks designated by RBS 

are sent between M-M and H-H users via the 

eNB. 

4. PROCESS OF LSTM-RRM 

By examining the request queue, LSTM-based 

RRM determines the priority for assigning the 

resource to the intended UE. Consequently, a 

UE with a high priority is seen as such 

throughout the network. The UE from which 

the BS gets the most request queues is 

identified using a set of queues prior to the 

RRM. In this manner, the UE that sends more 

queues is given precedence. The matrixes 

utilised in the LSTM are prior values of 

bandwidth, power, and data rate. Additionally, 

GSO is used for LSTM hyperparameter 

adjustment. Two distinct resources are allotted 

in RRM according on data rate parameters like 

power and bandwidth.The UE with greater 

data transmission requirements receives high 

resources from the LSTM-based RRM. This 

lessens traffic in the 5G environment and the 

number of request queues that are sent across 

the network. The block design for the LSTM-

based RRM is displayed in Figure 3. 

 

 
Figure 3: Block diagram of the LSTM-based 

RRM 

This RRM approach takes input from two 

modules (profile management and context 

acquisition) and generates the output using the 

LSTM. In this instance, the RRM and the 

network are interfaced. The LSTM and input 

modules utilised for resource management are 

described as follows:  

i. Context Acquisition: First, context 

acquisition is used to collect data about the 

UE and the network components. All of the 

5G network's components employ the 

monitoring procedure to locate the data. 

Here, the monitoring procedure provides 

information on each component, a certain 

time period, request queues, and QoS 

levels. This context knowledge is used to 

address the UE problems that occur in the 

5G network.  

ii. Profile management: The profile 

management provides the segment terminal 

and element capabilities. Additionally, this 

profile management component offers 

details on the UE's needs, limitations, 
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behaviour, and preferences (queues). This 

component specifically outlines the 

operational parameter sets that will be 

confirmed for the terminals and network 

components. To use LSTM to manage the 

UE's resources appropriately, this 

information is necessary. 

iii. LSTM-based RRM: Utilising every 

network resource to achieve high bit rates 

with the highest feasible QoS level is the 

primary goal of the LSTM. In order to 

serve the UEs with a higher QoS level, the 

best resource management is found here 

using the LSTM. The section that follows 

provides a thorough explanation of an 

efficient RRM that makes use of LSTM. 

iv. Learning: The learning rate of the LSTM, 

which was derived from GSO, is 0.9. The 

learning component of the LSTM contains 

information regarding context acquisition 

and profile management. This data aids in 

the identification and resolution of the 

problems using the LSTM-based RRM 

technique.  

a. LSTM-Based Radio Resource 

Management 

LSTM is utilised in this 5G network to get the 

best RRM in order to increase the 

communication process' bit rate. A particular 

kind of Recurrent Neural Network (RNN), the 

LSTM can often learn long-term dependencies 

and retain knowledge for extended periods of 

time. The LSTM network is made up of 

memory blocks called cells and is organised in 

a chain topology. The cell state and the hidden 

state are the two states that are transferred to 

the next cell in an LSTM. Here, the cell state 

is seen as a crucial chain of the data flow that 

permits the data to be sent unmodified during 

the decision-making process. However, the 

LSTM network may undergo some linear 

changes. As a result, the sigmoid gates may be 

used to add or delete data from the cell state. 

The series or layer of matrix operations with 

different individual weights is exactly the 

same as the LSTM's gates. Because LSTM 

uses gates to regulate the memorisation 

process, it avoids the long-term reliance issue. 

The architecture of LSTM is shown in Figure 

4. 

 

a. Grid Search Optimization (GSO)-Based 

Hyperparameter Tuning for LSTM 

During this stage, the LSTM's 

hyperparameters are optimised using the GSO 

(Saleh et al., 2021). As indicated in Table 1, 

the collection of hyperparameters handled 

under hyperparameter tuning includes the 

number of neurones, learning rate, regression 

rate (reg_rate), batch size, and epochs. In 

situations when the hyperparameters are not 

relevant, this GSO is utilised to achieve the 

best outcomes. The range of values in the 

search space is represented by the values in 

Table 1, and the hyperparameter tuning is 

carried out in accordance with the power and 

bandwidth. Here, the ideal value within the 

specified range of hyperparameters is chosen 

using GSO with 10-fold cross-validation. 
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Figure 4: Architecture of LSTM cell (Balmuri et al., 2022) 

Table 1. Parameters of LSTM (Balmuri et 

al., 2022). 

Parameters  Range of Values 

epochs 1–200 

Neurons 10–200 

reg_rate 0.01, 0.05, 0.1, 0.2, 

0.3, 0.4, 0.5 

learning rate 0.1–0.9 

batch_size 73, 146, 219, 500, 
1000 

Thus, the bandwidth, power, and data rate of 

the UE in the 5G network are used to train this 

LSTM network. 3628800 pieces of data were 

utilised to train the LSTM, and they were from 

simulations in which the 5G network was run 

without LSTM. As a result, the LSTM is used 

to allocate sufficient power and bandwidth to 

the UEs with greater QoS levels. As a result, 

the 5G network's bit rate is raised while 

communication is taking place. 

5. SYSTEM IMPLEMENTATION 

Implementing the LSTM based RRM to 

control fluctuating traffic rates, the MATLAB 

software and SIMULINK model were created 

and utilised for the simulated study of 

resource management in virtual private 

networks. The monitoring method will 

identify virtual private network congestion by 

using a dynamic host model system. An 

interactive environment for developing 

algorithms, visualising data, analysing data, 

and doing numerical calculations, MATLAB 

is a high-level technical computer language. It 

has several power simulation libraries. 

MATLAB is an acronym for matrix 

laboratory. MATLAB is a software program 

for high-performance numerical computing 

and visualisation that was created by 
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MathWorks Inc. With hundreds of accurate 

and dependable built-in mathematical 

functions, MATLAB offers an interactive 

environment. Matrix algebra, complex 

arithmetic, linear systems, differential 

equations, signal processing, optimisation, 

nonlinear systems, and several other kinds of 

scientific calculations are among the many 

mathematical issues that these functions may 

solve.  

The input box in the simulation creates data 

packets. The packet size is represented by the 

properties of each data set. After then, the data 

packets are sent via the data network. The 

MATLAB/Simulink Model for 

Communication Network Resource 

Management is shown in Figure 5. Its primary 

components were the following: resource 

assignment, network sink, logic module (if 

not), ingress committed rate, traffic source 

modules, node access control modules, 

parameter input box, display box, and scope.  

 

 
Figure 5: MATLAB Model of LSTM-RRM System on a Network 

Three VPNS are used in this work's model to 

fill it with traffic; the system is scalable and 

can support many VPNS. Three traffic sources 

provide audio, video, and best-effort packets 

for every VPN. 

6. RESULTS AND DISCUSSION 

This section provides a comprehensive 

description of the LSTM-RRM method's 

findings and discussion. Network Simulator-3, 

which operates on a Windows 8 operating 

system with an Intel core i3 CPU and 4GB 

RAM, was used to develop and simulate the 

LSTM-RRM technique. This LSTM-RRM 

technique uses guard interval insertion and 

frequency interleaving to reduce losses in the 

5G context. The LSTM-based RRM is then 

completed in order to allot sufficient resources 

for the targeted UEs. The system bandwidth is 

100 MHz, and the BS height taken into 

account for this LSTM-RRM technique is 10 

m.  
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Here, throughput, outage, Jain's index, and 

dual connectivity are used to assess the 

LSTM-RRM method's performance. These 

results are contrasted with DRRM(Montero et 

al., 2018) to show the effectiveness of the 

LSTM-RRM method. The DRRM was also 

implemented and simulated in MATLAB to 

evaluate the LSTM-RRM method. 

The UE throughput comparison between 

DRRM and LSTM-RRM is displayed in 

Figure 6 and Table 2. Here, the number of 

UEs is changed from 5 to 30 in order to make 

the comparison. The investigation indicates 

that the LSTM-RRM outperforms the DRRM 

in terms of UE throughput. As an illustration, 

the LSTM-RRM's UE throughput ranges from 

15 Mbps to 63 Mbps, whereas the DRRM's 

UE throughput ranges from 10 Mbps to 61 

Mbps. In particular, compared to the DRRM, 

the LSTM-RRM's UE throughput for 30 UE is 

increased by up to 50%. By employing 

frequency interleaving to reduce burst errors 

and guard level insertion to minimise Inter-

Symbol Interference (ISI), the LSTM-RRM is 

able to achieve greater UE throughput. 

Table 2: Analysis of UE throughput for 

LSTM-RRM and DRRM 

Number of 

UEs 

UE Throughput (Mbps) 

DRRM LSTM-RRM 

5 60 62 

10  37 43 

15  29 34 

20  21 27 

25  17 23 

30  9 14 

 

 
Figure 6: Comparative result of minimum UE 

throughput 

The dual connectivity comparison between the 

LSTM-RRM approach and DRRM is 

displayed in Figure 7 and Table 3. The ability 

to link several base stations (BSs) using the 

same radio access technology is known as 

dual connectivity (DC). The proportion of 

connected UEs in dual connectivity in relation 

to the total number of UEs in the system is 

specifically depicted in Figure 9 and Table 7. 

Because of its efficient RRM between the 

UEs, the LSTM-RRM approach provides 

greater dual connectivity than the DRRM. 

Compared to the DRRM, the LSTM-RRM's 

dual connection for 30 UE is enhanced by up 

to 12%. The 5G system's connection is 

enhanced by the usage of LSTM, which 

allocates power and bandwidth optimally.  
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Figure 7: Comparative result of dual 

connectivity 

Table 3: Analysis of dual connectivity for 

LSTM-RRM and DRRM 

Number of 

UEs 

UE Throughput (Mbps) 

DRRM LSTM-RRM 

5 69 75 

10  59 64 

15  62 68 

20  57 62 

25  57 61 

30  49 55 

7. CONCLUSION 

The study effectively illustrated how Radio 

Resource Management (RRM) based on Long 

Short-Term Memory (LSTM) could improve 

network performance and resource 

management in a 5G LTE-A setting. The 

system effectively distributed bandwidth and 

power to User Equipments (UEs) by utilising 

LSTM's capabilities, giving priority to those 

with greater data transmission requirements. 

As a consequence, network traffic congestion 

decreased and Quality of Service (QoS) levels 

increased.Furthermore, the LSTM model's 

performance was improved by integrating 

hyperparameter tweaking using Grid Search 

Optimization (GSO), which optimised 

variables such batch size, learning rate, and 

neurone count. Frequency interleaving and 

guard interval insertion were added to 

improve system dependability by reducing 

Inter-Symbol Interference (ISI) and burst 

errors.  

According to simulation findings, the LSTM-

RRM technique fared better than the DRRM 

approach on several important metrics, such as 

dual connectivity, Jain's fairness index, 

downtime, and UE throughput. For example, 

as compared to DRRM, the LSTM-RRM 

improved UE throughput for 30 UEs by up to 

50%. Additionally, a 12% improvement in 

dual connectivity performance demonstrated 

the method's capacity to sustain reliable 

connections across several Base Stations (BS). 

The LSTM-based RRM was confirmed by the 

study to be a scalable and successful approach 

to the problems associated with resource 

management in 5G networks. Future studies 

could look into including other machine 

learning algorithms and enlarging the system 

to manage more complex network scenarios 

and a variety of traffic patterns.  
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