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Abstract  

Fileless malware is a significant cybersecurity threat because of its ability to operate without 

traditional file-based signatures which makes it challenging for conventional security techniques to 

detect. Hence, this study presents the development of an intelligent fileless malware classification 

system with the use of deep learning and optimization techniques. The system employs the 

Behaviour-Driven Development (BDD) methodology which enables precise definition and 

validation of detection scenarios. Data was collected from primary sources like Cyber-Dome testbed 

infected with fileless malware across multiple operating systems (Windows, Linux, and Mac), and 

secondary sources such as Kaggle repositories. Feature engineering was performed using the African 

Vulture Optimization Algorithm (AVOA) to select the most relevant attributes, enhancing model 

accuracy while reducing computational complexity. A Deep Neural Network (DNN) classifier was 

trained on the optimized dataset to detect malicious activity. The system was implemented in Python 

using TensorFlow and tested as a web-based platform. The software tested indicates that the 

proposed model significantly improves the detection of complex malware behaviours, providing a 

robust cybersecurity solution. 
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1. INTRODUCTION 

The taxonomy of malware refers to the 

classification and categorization of various 

types of malicious software based on their 

characteristics, methods of attack, and impact 

on target systems. This classification allows 

cybersecurity professionals to better 

understand, identify, and mitigate the risks 

posed by different malware types. One of the 

most widely recognized categories is 

ransomware, which encrypts the victim’s data 

or locks them out of their system, demanding 

a ransom payment for restoring access. This 

form of malware is often delivered through 

phishing emails, malicious links, or software 

vulnerabilities. Another prevalent malware 

type is the botnet, which involves a network of 

compromised machines, or "bots," that are 

controlled remotely by attackers to carry out 

tasks like distributed denial-of-service (DDoS) 

attacks, spamming, or data theft (Dang et al., 

2019). 
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Trojans are another common type of malware, 

often masquerading as legitimate software to 

deceive users into executing malicious 

payloads. Once activated, Trojans can open 

backdoors or steal sensitive information. 

Spyware, on the other hand, is designed to 

silently monitor user activity, capturing 

personal data such as login credentials, 

browsing habits, or financial information 

without the user's knowledge. This type of 

malware is often used for identity theft or 

espionage (Tekiner et al., 2021). 

The infection chain of file-based malware 

highlights the process through which 

malicious software is transmitted and executed 

on a user's system via files (Snow, 2021). 

These malware types typically rely on files 

such as executables, documents, or scripts to 

infiltrate a system, making them a common 

vector for cyber attacks. Understanding the 

infection chain is crucial for identifying how 

file-based malware spreads and how it can be 

prevented or mitigated. The section explains 

the typical process by which file-based 

malware enters a system, executes its payload, 

and potentially compromises the device, along 

with the role of antivirus software in detection 

and protection. 

FM operates on the principle of utilizing 

legitimate system tools and resources to carry 

out malicious activities, without leaving 

traditional traces on the disk. Unlike 

traditional malware, which relies on files to 

execute its payload, FM runs entirely in the 

system's memory. By doing so, it evades 

detection by many conventional security 

mechanisms that rely on file scanning. This 

type of malware exploits the inherent trust that 

operating systems and security software place 

in legitimate processes such as PowerShell, 

Windows Management Instrumentation 

(WMI), or other administrative tools to 

perform malicious actions without triggering 

alarms (Atapattu and Jayawardena, 2021). 

The core theory behind FM lies in its stealth 

and persistence. It does not rely on traditional 

attack vectors, such as downloading or 

executing files from external sources. Instead, 

it often exploits vulnerabilities in system 

software, such as unpatched operating systems 

or applications, to inject malicious code 

directly into memory (Mohanta and Saldanha, 

2020).Detecting FM presents unique 

challenges due to its ability to operate entirely 

in system memory and evade traditional 

detection methods that rely on file-based 

analysis. Unlike traditional malware that often 

leaves traces on the disk, FM resides in 

volatile memory, leveraging legitimate system 

tools and processes to execute malicious 

actions without leaving permanent files 

behind. As a result, detecting FM requires a 

combination of advanced techniques and tools 

tailored to identify unusual patterns of 

behaviour, memory usage, and system activity. 

Machine Learning (ML) has become a crucial 

approach for detecting fileless malware, which 

poses significant challenges for traditional 

security tools due to its ability to operate 

entirely in system memory without leaving 

traces on disk. Unlike file-based malware that 

relies on signatures and static characteristics, 

FM leverages legitimate system processes and 

tools, making it difficult to detect using 

conventional methods (Singh et al., 

2020).Deep learning, particularly through 

models like Deep Neural Networks (DNN), 

has emerged as a powerful technique for 

detecting FM due to its ability to analyze and 

learn complex patterns in system behaviour. 
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Traditional malware detection methods often 

rely on predefined signatures or static features, 

making it challenging to detect sophisticated 

threats like fileless malware, which operates in 

memory and uses legitimate system processes 

to execute its payload (Obini et al., 2024). 

Deep learning models can address this 

limitation by learning dynamic and high-

dimensional features from large datasets, 

enabling them to recognize subtle anomalies 

in system activity, such as unusual process 

behaviour or unauthorized use of system tools 

like PowerShell or WMI. 

Among the notable and recent studies are 

Obini et al. (2024) who applied deep neural 

network to develop a machine learning based 

Fileless malware filter, while Siddiqui et al. 

(2024) trained several machine learning 

algorithms to generate model for the detection 

of malware. However, despite the success of 

these studies, adaptive model capable of 

detecting Fileless malware on different 

operating systems remained a gap. Therefore, 

this study proposed the design and 

implementation of dynamic AI-driven network 

traffic analysis framework for malware 

detection and prevention, using real-time 

approach. The contributions of the paper are 

as follows, the development of new data 

model for FM considering different computer 

operating system, then feature engineering 

approaches will be applied to process the data. 

DNN carefully designed will e proposed and 

then trained to generate reliable model for 

real-time FM detection. Several experiments 

will be carried out to test the model 

considering variant operating systems to 

demonstrate the application diversity of the 

solution proposed in this work. 

2. SYSTEM DEVELOPMENT 

METHODOLOGY 
The methodology used for this work is the 

Behaviour-Driven Development (BDD) 

approach. The approach was adopted because 

it focuses on defining and validating system 

behaviours in collaboration with stakeholders. 

Fileless malware is sophisticated and relies on 

leveraging legitimate system tools, making its 

detection highly scenario-specific. BDD 

allows the creation of clear, natural-language 

scenarios that describe the expected detection 

outcomes, such as identifying malicious 

PowerShell activity or unauthorized registry 

modifications. This ensures alignment 

between cybersecurity experts, developers, 

and end-users, while enabling iterative 

refinement. Furthermore, BDD facilitates 

robust testing through predefined behaviours, 

improving the accuracy and reliability of the 

classifier in detecting complex, real-world 

fileless malware patterns. 

2.1 Data Acquisition 

The Data Acquisition Module is responsible 

for collecting raw malware data from various 

system logs, memory dumps, registry 

modifications, and network activity traces. 

Fileless malware is particularly challenging to 

detect because it does not leave behind 

traditional file-based signatures. Therefore, 

this module focuses on extracting behavioural 

patterns, process execution logs, and 

anomalous registry changes that indicate 

potential malware activity. It gathers both 

normal and adversarial malware datasets, 

ensuring that the classification model is 

trained on a diverse range of samples. The 

pre-processed structured dataset generated by 
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this module is then forwarded to the feature 

engineering stage for further processing.   

Data of FM used in this work will be collected 

from cyber-dome as the primary data source. 

The testbed FM infected computer will 

consider operating systems such as windows 

(version 2007), Linux (Ubuntu 20.04) and 

Mac (version, 10.7, 2011). The sample size of 

the data collected is 5026 features of fileless 

malware. The secondary source of data 

collection is Kaggle repository, considering 

open-source FM dataset. The sample size of 

data collected is 13,743 features of fileless 

malware. 

2.2 Feature Engineering 

The Feature Engineering Module plays a 

critical role in refining the raw data obtained 

from the acquisition module. It applies three 

main techniques: feature selection, feature 

transformation, and feature extraction. Feature 

selection is particularly important in this 

context, as it involves filtering out redundant 

or irrelevant features using the African Vulture 

Optimization Algorithm. This optimization 

algorithm ensures that only the most 

significant features are retained, thereby 

improving the model’s accuracy and reducing 

computational complexity. Feature 

transformation normalizes and encodes data 

into a format suitable for machine learning, 

while feature extraction identifies key 

behavioural attributes of fileless malware. The 

final output of this module is an optimized 

feature set, ready for classification.   

2.3 The System Submenus 

The section discussed the sub-system of the 

fileless malware detection system, showcasing 

the key sub-systems that contribute to the 

detection and classification of fileless malware 

as n Figure 1. This system is designed to 

handle various stages of data processing, 

feature engineering, deep learning model 

training, and evaluation to ensure accurate 

detection. The workflow begins from a Main 

Menu, which provides access to the different 

sub-systems: Dataset, Feature Engineering, 

Deep Neural Network, and the Detection 

Model. Each of these sub-systems plays a 

critical role in improving the reliability of the 

malware detection process. 

 
Figure 1: System Sub-menu  

The dataset sub-system is responsible for 

gathering and managing the data required for 

training the malware detection model. This 

includes three key components: Malware 

Data, Adversarial Data, and New Data Model. 

Malware data consists of real-world examples 

of fileless malware collected from various 

sources, including infected systems and 

cybersecurity research databases. Adversarial 

data is designed to test the robustness of the 

detection model against sophisticated malware 
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that attempts to evade detection. Finally, the 

new data model represents an evolving dataset 

that is continuously updated with new 

malware signatures and behaviours to keep the 

detection system adaptive and effective 

against emerging threats. 

Feature engineering is a crucial step in 

preparing the dataset for deep learning 

analysis. This sub-system comprises three 

major processes: Feature Selection, Feature 

Transformation, and Feature Extraction. 

Feature selection involves identifying the most 

relevant attributes from the dataset that 

contribute significantly to malware 

classification, ensuring that the model focuses 

on meaningful patterns. Feature 

transformation converts raw data into a format 

suitable for deep learning, applying techniques 

like normalization and encoding to enhance 

model accuracy. Feature extraction further 

refines the data by deriving new features that 

improve the model’s ability to distinguish 

between benign and malicious activities. 

The DNN sub-system is the core of the 

malware detection system, where the actual 

learning and classification take place. The 

primary function in this sub-system is training 

the model, which involves feeding the 

processed dataset into a deep learning 

framework that learns patterns associated with 

malware behaviour. The DNN consists of 

multiple layers, including input, hidden, and 

output layers, that work together to improve 

detection accuracy. Advanced techniques such 

as dropout regularization, activation functions, 

and optimization algorithms are employed to 

enhance the model’s generalization and 

prevent overfitting. 

Once the deep neural network is trained, the 

final step is evaluating its performance in 

detecting fileless malware. This sub-system 

includes Testing and Results, where the 

trained model is validated using test data to 

assess its effectiveness. Performance metrics 

such as accuracy, precision, recall, and F1-

score are used to measure how well the model 

distinguishes between benign and malicious 

activities. The results from this stage 

determine whether further optimization is 

needed before deploying the model in real-

world cybersecurity environments. 

3. THE PROPOSED DEEP NEURAL 

NETWORK MODULE 
The Deep Neural Network (DNN) Module is 

the core component responsible for training a 

classification model based on the optimized 

feature set. This module consists of multiple 

layers, including an input layer, several hidden 

layers with activation functions, and an output 

layer that determines whether a sample is 

benign or malicious. During training, the 

model learns to recognize malware patterns by 

adjusting weights through back-propagation 

and an adaptive optimization algorithm (e.g., 

Adam optimizer). The model undergoes 

extensive training and fine-tuning using 

labelled datasets, ensuring that it generalizes 

well to unseen malware samples. The trained 

DNN model serves as the decision-making 

engine for classifying new malware instances.   

3.1 System Algorithms 

This section presents the algorithm of the 

various modules applied for the fileless 

malware classification system. 

The AVOA for feature selection 

(Abdollahzadeh et al., 2021) 

1. Inputs: The population size N and 

maximum number of iterations T 
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2. Outputs: The location of Vulture and 

its fitness value 3: Initialize the 

random population Pi(i = 1,2, ...,N)  

3. while (stopping condition is not met) 

do  

4. Calculate the fitness values of Vulture 

5. Set PBestVulture1 as the location of 

Vulture (First best location Best 

Vulture Category 1)  

6. Set PBestVulture2 as the location of 

Vulture (Second best location Best 

Vulture   

7. for (each Vulture (Pi)) do 

8. Select R(i) using  

9. Update the F  

10. if (|F| ≥ 1) then 

11. if (P1 ≥ randP1) then  

12. Update the location Vulture  

13. else 

14. Update the location Vulture  

15. if (|F| < 1) then 

16. if (|F| ≥ 0.5) then 

17. if (P2 ≥ rand P2) then  

18. Update the location Vulture  

19. else 

20. Update the location Vulture  

21. else  

22. if (P3 ≥ randP3) then  

23. Update the location Vulture 

24. else  

25. Update 

26. End  

 

The PCA Algorithm (Pechenizkiy, et al., 

2004) 

Input: Feature matrix X 

Output: Transformed dataset with reduced 

features 

1. Standardize the dataset X by 

normalizing feature values. 

2. Compute the covariance matrix of X. 

3. Perform Eigen decomposition on the 

covariance matrix. 

4. Select top principal components based 

on explained variance. 

5. Transform the dataset using the 

selected components. 

6. Return the reduced dataset. 

 

Back-Propagation algorithm (Ogbeta and 

Nwobodo, 2022); 

1. Start  

2. Parameters initialization  

3. Set gradient loss tolerance = 1𝑒 − 106 

4. Forward propagation: 

5. Compute output of training samples  

6. For Y output unit K 

7. 𝛿𝑘   ← 𝑜𝑘 (1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘) 

8. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 𝑢𝑛𝑖𝑡 ℎ 

9. 𝛿𝑘  ← 𝑜ℎ(1 − 𝑜𝑘) ∑ 𝑤ℎ,𝑘𝛿𝑘𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠  

10. Apply regularization algorithm to loss 

function   

11. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑛𝑒𝑢𝑟𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑗  

12. 𝑤𝑖𝑗  ←  𝑤𝑖𝑗 +  ∆𝑤𝑖𝑗  

13. 𝑤ℎ𝑒𝑟𝑒 ∆𝑤𝑖𝑗 =  ŋ𝛿𝑗𝑥𝑖𝑗 

14. 𝐸𝑛𝑑  
 

Dropout Regularization algorithm (Salehin 

and Kang, 2021) 

1. Start 

2. Input activation values  

3. Parameter initialization (weight, bias, 

drop rate 𝑝) 

4. Generate probability vector (p) for 

neurons layers  

5. Choose probability vector as (0 and 1) 

6. Apply dropout of neurons using 

probability vector of neurons set to 0 

7. Forward propagation with dropout  

8. Compute the next layer activated value  

9. Compute weight and bias sum of 

dropout  

10. Apply nonlinearity with 𝑡𝑎𝑛ℎ 

activation function 

11. Repeat for each layer  

12. Update neural network training    

13. End  
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The DNN Algorithm for Malware 

Classification  

1. Initialize network with input, hidden, 

and output layers. 

2. For each training iteration 

3. Perform Forward Propagation to 

compute predictions. 

4. Compute the loss using a chosen loss 

function. 

5. Apply Back-propagation to update 

weights. 

6. Repeat until the model converges. 

7. Return the trained model. 

8. End  

4. SYSTEM IMPLEMENTATION 
The programming environment for developing 

the fileless malware classification system was 

chosen based on its ability to support machine 

learning, deep learning, and optimization 

techniques efficiently. Python was selected as 

the primary programming language due to its 

extensive ecosystem of libraries and 

frameworks for data science, cybersecurity, 

and artificial intelligence.   

The development was carried out using 

Jupyter Notebook and Google Colab, 

providing an interactive coding environment 

with cloud-based GPU acceleration for deep 

learning model training. Essential libraries 

such as TensorFlow and Keras were used for 

deep learning, while Scikit-learn supported 

traditional machine learning tasks like feature 

selection and classification. Additionally, 

NumPy and Pandas were utilized for efficient 

data manipulation, and Matplotlib and 

Seaborn helped visualize results. The 

integration of these tools ensured a seamless 

development process, from data pre-

processing and feature selection using the 

AVOA to DNN training and evaluation.  

4.1 System Testing 

System testing is a crucial phase to evaluate 

the functionality, reliability, and performance 

of the fileless malware classification system. 

This stage ensures that the implemented 

system meets the defined requirements and 

performs as expected under various 

conditions. The testing process includes the 

Test Plan, Test Data, and a comparison of 

Actual vs. Expected Results.   

4.2 Test Plan 

The test plan outlines the approach for 

validating the system’s effectiveness in 

classifying fileless malware. The primary 

objectives of testing include:   

a. Verifying the accuracy and efficiency 

of the AVOA-based feature selection 

process.   

b. Evaluating the deep learning 

classification model to ensure high 

detection rates.   

c. Assessing system response time and 

computational efficiency.   

d. Ensuring the system correctly 

identifies and quarantines detected 

threats.   

Different testing methodologies were applied, 

including unit testing for individual modules, 

integration testing to ensure seamless 

interaction between components, and 

performance testing to validate system 

efficiency under various workloads.   

4.3 Test Data 

The test dataset was composed of 1000 

samples, including a mix of normal system 

processes, benign software, and fileless 

malware. These data points were pre-

processed and subjected to feature selection 

using AVOA, followed by classification using 
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a Deep Neural Network (DNN). The test data 

included:   

i. Feature vectors of normal files (e.g., 

system processes, legitimate 

software).   

ii. Feature vectors of malware samples 

(fileless attacks, memory-based 

threats).   

iii. Augmented data generated using 

synthetic techniques to improve 

model robustness.   

5. RESULT AND DISCUSSION  
The system integration as software involves 

the seamless incorporation of the fileless 

malware detection model into a fully 

functional software solution. This integration 

ensures that the detection algorithm operates 

efficiently within a real-world environment, 

facilitating continuous monitoring and 

analysis of malicious activities across different 

operating systems. The software 

implementation of the detection system was 

tested on Windows, Linux, and macOS, where 

it successfully scanned files, identified fileless 

malware, and generated real-time alerts. The 

graphical user interface provided an intuitive 

platform for users to interact with the 

detection model, allowing them to monitor 

detection rates, analyze malware behaviours, 

and manage security responses effectively. 

Figure 2 presents the GUI interface of the 

software. 

Figure 2: The GUI interface of the software 

Figure 2 presents the GUI interface of the 

software for the classification of files 

malware. This interface allows real-time 

system scanning to detect malicious activities 

like the fileless malware which has continued 

to facilitate cyber-attack. To test the software 

files from various operating system was 

collected from windows, Linux and Mac IOS, 

then imported them separately on the software 

as shown in Figure 3. 
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Figure 3: Interface to load the test data samples  

Figure 4: Interface showing the scanning process when tested on Windows IOS 
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Figure 5: Results of the scanning outcome on Windows IoS. 

 
Figure 6: Result of scanning on Linux IOS 
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Figure 7: Result of scanning on Mac IOS. 

In Figure 3, when the test data was imported 

to the system, automatically the scanning 

process began as shown in Figure 4, allowing 

the DNN based fileless malware classifier to 

perform scanning of features and classifying 

fileless malware on the OS. In the Figure 5, 

the result of the scanning process upon 

completion was reported for Windows IOS, 

Figure 6 reported result of scanning for Linux 

IOS and Figure 7 was reported for Mac IOS 

testing. 

5.1 System Security 

System security is a critical aspect of the 

fileless malware classification system, 

ensuring that the system remains protected 

against cyber threats, unauthorized access, and 

data breaches. Given that fileless malware 

operates without traditional file-based 

signatures, the security mechanisms 

implemented in this system are designed to 

detect, isolate, and mitigate such attacks while 

maintaining system integrity.   

The security implementation includes multiple 

layers of protection, such as access control, 

data encryption, and secure model execution. 

Role-based authentication ensures that only 

authorized users can access system 

functionalities, preventing malicious actors 

from tampering with the malware detection 

process. 

Additionally, encrypted communication 

channels safeguard sensitive data during 

model training and classification. To prevent 

adversarial attacks, the system employs secure 

model execution environments, where the 

deep learning model is protected against 

manipulation. The AVOA enhances security 

by dynamically adapting feature selection to 

counter evasion techniques used by malware 

developers. Furthermore, real-time monitoring 

detects anomalies in system behaviour, 

automatically triggering an alert or quarantine 
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action when suspicious activity is identified. 

Overall, the system security measures ensure 

that the malware classification model remains 

robust, resistant to attacks, and capable of 

maintaining high detection accuracy in real-

world cybersecurity environments.  

5.2 Training  

The system training phase involves teaching 

the malware classification model using a 

carefully curate dataset of both benign and 

malicious fileless malware samples. The 

training process includes data pre-processing, 

feature extraction using the AVOA, 

dimensionality reduction with PCA, and 

classification using a DNN. The system 

undergoes multiple iterations to optimize its 

accuracy, reducing false positives and 

negatives. The model is evaluated using 

performance metrics such as precision, recall, 

F1-score, and accuracy to ensure robustness 

before deployment.  

5.3 Documentation   

Comprehensive documentation is essential for 

ensuring ease of use, maintenance, and future 

upgrades of the system. The documentation 

consists of:   

1. User Manual: Provides step-by-step 

guidance on how to operate the 

malware detection system, including 

input data formats, expected outputs, 

and troubleshooting procedures.   

2. Developer Documentation: Contains 

detailed descriptions of the AVOA-

based feature selection model, deep 

learning architecture, hyperparameter 

tuning, and system APIs for future 

enhancements.   

3. System Architecture: Includes diagrams 

illustrating the data flow, feature 

extraction, classification pipeline, and 

security protocols implemented.   

4. Testing Reports: Provides results of 

system testing, validation datasets, and 

performance benchmarks, ensuring the 

system meets security and efficiency 

requirements.   

6. CONCLUSION 
This paper developed a robust approach for 

detecting fileless malware using deep learning 

techniques. The study leveraged data from two 

primary sources such as the Cyber Dome, 

which provided real-time attack data, and 

Kaggle, which served as a supplementary 

dataset for enhancing model robustness. The 

collected data underwent a comprehensive 

pre-processing phase, including integration 

and cleaning, to ensure quality and 

consistency. Feature selection was carried out 

using the African Vulture Optimization 

Algorithm (AVOA), which helped in 

identifying the most relevant attributes while 

reducing computational overhead. Further 

dimensionality reduction was applied using 

PCA to improve the efficiency of the detection 

model. The refined dataset was then used to 

train a DNN, which was designed to classify 

and detect fileless malware accurately.   

The software integrated with the developed 

model was extensively tested on different 

operating systems, such as Windows, Linux, 

and mac-OS, to evaluate its generalization 

ability across diverse environments. The 

results demonstrated high detection accuracy 

across all platforms, with notable success rates 

of 99% for Windows, 96% for Linux, and 

92% for mac-OS. Additionally, the classifier 

maintained a low false alarm rate, ensuring 

minimal disruption to legitimate processes.  
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Following model training and validation, the 

deep learning-based detection system was 

integrated into a software framework. This 

integration facilitated real-time detection and 

monitoring of fileless malware attacks across 

different platforms. The system's effectiveness 

was validated through rigorous testing on 

various operating systems, confirming its 

capability to detect and mitigate fileless 

malware threats efficiently.   

This study provides a significant advancement 

in cybersecurity, particularly in combating 

fileless malware threats that do not rely on 

traditional file-based execution. The findings 

underscore the potential of deep learning in 

strengthening endpoint security and offer a 

scalable approach to protecting computing 

environments against sophisticated cyber 

threats. 
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