
International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 768

DEVELOPMENT OF AN INTELLIGENT FILELESS MALWARE

CLASSIFICATION SYSTEM USING OPTIMIZED DEEP LEARNING

TECHNIQUE

Nwafor Anthony C1*, Mgbeafulike I.J.2, Okeke O.C.3

1,2,3Department of Computer Science, Chukwuemeka Odumegwu Ojukwu University, Anambara State.

Email: anthnonynwafor981@gmail.com1; ike.mgbeafulike@gmail.com2; co.okeke@coou.edu.ng3

Corresponding Author’s Email and Tel:1* anthnonynwafor981@gmail.com; +2348065375935

Abstract

Fileless malware is a significant cybersecurity threat because of its ability to operate without

traditional file-based signatures which makes it challenging for conventional security techniques to

detect. Hence, this study presents the development of an intelligent fileless malware classification

system with the use of deep learning and optimization techniques. The system employs the

Behaviour-Driven Development (BDD) methodology which enables precise definition and

validation of detection scenarios. Data was collected from primary sources like Cyber-Dome testbed

infected with fileless malware across multiple operating systems (Windows, Linux, and Mac), and

secondary sources such as Kaggle repositories. Feature engineering was performed using the African

Vulture Optimization Algorithm (AVOA) to select the most relevant attributes, enhancing model

accuracy while reducing computational complexity. A Deep Neural Network (DNN) classifier was

trained on the optimized dataset to detect malicious activity. The system was implemented in Python

using TensorFlow and tested as a web-based platform. The software tested indicates that the

proposed model significantly improves the detection of complex malware behaviours, providing a

robust cybersecurity solution.

Keywords: Fileless Malware (FM); Deep Neural Network (DNN); Behaviour-Driven Development

(BDD); African Vulture Optimization Algorithm (AVOA); Cybersecurity

1. INTRODUCTION

The taxonomy of malware refers to the

classification and categorization of various

types of malicious software based on their

characteristics, methods of attack, and impact

on target systems. This classification allows

cybersecurity professionals to better

understand, identify, and mitigate the risks

posed by different malware types. One of the

most widely recognized categories is

ransomware, which encrypts the victim’s data

or locks them out of their system, demanding

a ransom payment for restoring access. This

form of malware is often delivered through

phishing emails, malicious links, or software

vulnerabilities. Another prevalent malware

type is the botnet, which involves a network of

compromised machines, or "bots," that are

controlled remotely by attackers to carry out

tasks like distributed denial-of-service (DDoS)

attacks, spamming, or data theft (Dang et al.,

2019).

 Volume 4, Issue III, March, 2025, No. 60, pp. 768-781

Submitted 1/3/2025; Final peer review 22/3/2025

Online Publication 26/3/2025

Available Online at http://www.ijortacs.com

mailto:anthnonynwafor981@gmail.com
mailto:ike.mgbeafulike@gmail.com
mailto:anthnonynwafor981@gmail.com

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 769

Trojans are another common type of malware,

often masquerading as legitimate software to

deceive users into executing malicious

payloads. Once activated, Trojans can open

backdoors or steal sensitive information.

Spyware, on the other hand, is designed to

silently monitor user activity, capturing

personal data such as login credentials,

browsing habits, or financial information

without the user's knowledge. This type of

malware is often used for identity theft or

espionage (Tekiner et al., 2021).

The infection chain of file-based malware

highlights the process through which

malicious software is transmitted and executed

on a user's system via files (Snow, 2021).

These malware types typically rely on files

such as executables, documents, or scripts to

infiltrate a system, making them a common

vector for cyber attacks. Understanding the

infection chain is crucial for identifying how

file-based malware spreads and how it can be

prevented or mitigated. The section explains

the typical process by which file-based

malware enters a system, executes its payload,

and potentially compromises the device, along

with the role of antivirus software in detection

and protection.

FM operates on the principle of utilizing

legitimate system tools and resources to carry

out malicious activities, without leaving

traditional traces on the disk. Unlike

traditional malware, which relies on files to

execute its payload, FM runs entirely in the

system's memory. By doing so, it evades

detection by many conventional security

mechanisms that rely on file scanning. This

type of malware exploits the inherent trust that

operating systems and security software place

in legitimate processes such as PowerShell,

Windows Management Instrumentation

(WMI), or other administrative tools to

perform malicious actions without triggering

alarms (Atapattu and Jayawardena, 2021).

The core theory behind FM lies in its stealth

and persistence. It does not rely on traditional

attack vectors, such as downloading or

executing files from external sources. Instead,

it often exploits vulnerabilities in system

software, such as unpatched operating systems

or applications, to inject malicious code

directly into memory (Mohanta and Saldanha,

2020).Detecting FM presents unique

challenges due to its ability to operate entirely

in system memory and evade traditional

detection methods that rely on file-based

analysis. Unlike traditional malware that often

leaves traces on the disk, FM resides in

volatile memory, leveraging legitimate system

tools and processes to execute malicious

actions without leaving permanent files

behind. As a result, detecting FM requires a

combination of advanced techniques and tools

tailored to identify unusual patterns of

behaviour, memory usage, and system activity.

Machine Learning (ML) has become a crucial

approach for detecting fileless malware, which

poses significant challenges for traditional

security tools due to its ability to operate

entirely in system memory without leaving

traces on disk. Unlike file-based malware that

relies on signatures and static characteristics,

FM leverages legitimate system processes and

tools, making it difficult to detect using

conventional methods (Singh et al.,

2020).Deep learning, particularly through

models like Deep Neural Networks (DNN),

has emerged as a powerful technique for

detecting FM due to its ability to analyze and

learn complex patterns in system behaviour.

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 770

Traditional malware detection methods often

rely on predefined signatures or static features,

making it challenging to detect sophisticated

threats like fileless malware, which operates in

memory and uses legitimate system processes

to execute its payload (Obini et al., 2024).

Deep learning models can address this

limitation by learning dynamic and high-

dimensional features from large datasets,

enabling them to recognize subtle anomalies

in system activity, such as unusual process

behaviour or unauthorized use of system tools

like PowerShell or WMI.

Among the notable and recent studies are

Obini et al. (2024) who applied deep neural

network to develop a machine learning based

Fileless malware filter, while Siddiqui et al.

(2024) trained several machine learning

algorithms to generate model for the detection

of malware. However, despite the success of

these studies, adaptive model capable of

detecting Fileless malware on different

operating systems remained a gap. Therefore,

this study proposed the design and

implementation of dynamic AI-driven network

traffic analysis framework for malware

detection and prevention, using real-time

approach. The contributions of the paper are

as follows, the development of new data

model for FM considering different computer

operating system, then feature engineering

approaches will be applied to process the data.

DNN carefully designed will e proposed and

then trained to generate reliable model for

real-time FM detection. Several experiments

will be carried out to test the model

considering variant operating systems to

demonstrate the application diversity of the

solution proposed in this work.

2. SYSTEM DEVELOPMENT

METHODOLOGY
The methodology used for this work is the

Behaviour-Driven Development (BDD)

approach. The approach was adopted because

it focuses on defining and validating system

behaviours in collaboration with stakeholders.

Fileless malware is sophisticated and relies on

leveraging legitimate system tools, making its

detection highly scenario-specific. BDD

allows the creation of clear, natural-language

scenarios that describe the expected detection

outcomes, such as identifying malicious

PowerShell activity or unauthorized registry

modifications. This ensures alignment

between cybersecurity experts, developers,

and end-users, while enabling iterative

refinement. Furthermore, BDD facilitates

robust testing through predefined behaviours,

improving the accuracy and reliability of the

classifier in detecting complex, real-world

fileless malware patterns.

2.1 Data Acquisition

The Data Acquisition Module is responsible

for collecting raw malware data from various

system logs, memory dumps, registry

modifications, and network activity traces.

Fileless malware is particularly challenging to

detect because it does not leave behind

traditional file-based signatures. Therefore,

this module focuses on extracting behavioural

patterns, process execution logs, and

anomalous registry changes that indicate

potential malware activity. It gathers both

normal and adversarial malware datasets,

ensuring that the classification model is

trained on a diverse range of samples. The

pre-processed structured dataset generated by

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 771

this module is then forwarded to the feature

engineering stage for further processing.

Data of FM used in this work will be collected

from cyber-dome as the primary data source.

The testbed FM infected computer will

consider operating systems such as windows

(version 2007), Linux (Ubuntu 20.04) and

Mac (version, 10.7, 2011). The sample size of

the data collected is 5026 features of fileless

malware. The secondary source of data

collection is Kaggle repository, considering

open-source FM dataset. The sample size of

data collected is 13,743 features of fileless

malware.

2.2 Feature Engineering

The Feature Engineering Module plays a

critical role in refining the raw data obtained

from the acquisition module. It applies three

main techniques: feature selection, feature

transformation, and feature extraction. Feature

selection is particularly important in this

context, as it involves filtering out redundant

or irrelevant features using the African Vulture

Optimization Algorithm. This optimization

algorithm ensures that only the most

significant features are retained, thereby

improving the model’s accuracy and reducing

computational complexity. Feature

transformation normalizes and encodes data

into a format suitable for machine learning,

while feature extraction identifies key

behavioural attributes of fileless malware. The

final output of this module is an optimized

feature set, ready for classification.

2.3 The System Submenus

The section discussed the sub-system of the

fileless malware detection system, showcasing

the key sub-systems that contribute to the

detection and classification of fileless malware

as n Figure 1. This system is designed to

handle various stages of data processing,

feature engineering, deep learning model

training, and evaluation to ensure accurate

detection. The workflow begins from a Main

Menu, which provides access to the different

sub-systems: Dataset, Feature Engineering,

Deep Neural Network, and the Detection

Model. Each of these sub-systems plays a

critical role in improving the reliability of the

malware detection process.

Figure 1: System Sub-menu

The dataset sub-system is responsible for

gathering and managing the data required for

training the malware detection model. This

includes three key components: Malware

Data, Adversarial Data, and New Data Model.

Malware data consists of real-world examples

of fileless malware collected from various

sources, including infected systems and

cybersecurity research databases. Adversarial

data is designed to test the robustness of the

detection model against sophisticated malware

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 772

that attempts to evade detection. Finally, the

new data model represents an evolving dataset

that is continuously updated with new

malware signatures and behaviours to keep the

detection system adaptive and effective

against emerging threats.

Feature engineering is a crucial step in

preparing the dataset for deep learning

analysis. This sub-system comprises three

major processes: Feature Selection, Feature

Transformation, and Feature Extraction.

Feature selection involves identifying the most

relevant attributes from the dataset that

contribute significantly to malware

classification, ensuring that the model focuses

on meaningful patterns. Feature

transformation converts raw data into a format

suitable for deep learning, applying techniques

like normalization and encoding to enhance

model accuracy. Feature extraction further

refines the data by deriving new features that

improve the model’s ability to distinguish

between benign and malicious activities.

The DNN sub-system is the core of the

malware detection system, where the actual

learning and classification take place. The

primary function in this sub-system is training

the model, which involves feeding the

processed dataset into a deep learning

framework that learns patterns associated with

malware behaviour. The DNN consists of

multiple layers, including input, hidden, and

output layers, that work together to improve

detection accuracy. Advanced techniques such

as dropout regularization, activation functions,

and optimization algorithms are employed to

enhance the model’s generalization and

prevent overfitting.

Once the deep neural network is trained, the

final step is evaluating its performance in

detecting fileless malware. This sub-system

includes Testing and Results, where the

trained model is validated using test data to

assess its effectiveness. Performance metrics

such as accuracy, precision, recall, and F1-

score are used to measure how well the model

distinguishes between benign and malicious

activities. The results from this stage

determine whether further optimization is

needed before deploying the model in real-

world cybersecurity environments.

3. THE PROPOSED DEEP NEURAL

NETWORK MODULE
The Deep Neural Network (DNN) Module is

the core component responsible for training a

classification model based on the optimized

feature set. This module consists of multiple

layers, including an input layer, several hidden

layers with activation functions, and an output

layer that determines whether a sample is

benign or malicious. During training, the

model learns to recognize malware patterns by

adjusting weights through back-propagation

and an adaptive optimization algorithm (e.g.,

Adam optimizer). The model undergoes

extensive training and fine-tuning using

labelled datasets, ensuring that it generalizes

well to unseen malware samples. The trained

DNN model serves as the decision-making

engine for classifying new malware instances.

3.1 System Algorithms

This section presents the algorithm of the

various modules applied for the fileless

malware classification system.

The AVOA for feature selection

(Abdollahzadeh et al., 2021)

1. Inputs: The population size N and

maximum number of iterations T

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 773

2. Outputs: The location of Vulture and

its fitness value 3: Initialize the

random population Pi(i = 1,2, ...,N)

3. while (stopping condition is not met)

do

4. Calculate the fitness values of Vulture

5. Set PBestVulture1 as the location of

Vulture (First best location Best

Vulture Category 1)

6. Set PBestVulture2 as the location of

Vulture (Second best location Best

Vulture

7. for (each Vulture (Pi)) do

8. Select R(i) using

9. Update the F

10. if (|F| ≥ 1) then

11. if (P1 ≥ randP1) then

12. Update the location Vulture

13. else

14. Update the location Vulture

15. if (|F| < 1) then

16. if (|F| ≥ 0.5) then

17. if (P2 ≥ rand P2) then

18. Update the location Vulture

19. else

20. Update the location Vulture

21. else

22. if (P3 ≥ randP3) then

23. Update the location Vulture

24. else

25. Update

26. End

The PCA Algorithm (Pechenizkiy, et al.,

2004)

Input: Feature matrix X

Output: Transformed dataset with reduced

features

1. Standardize the dataset X by

normalizing feature values.

2. Compute the covariance matrix of X.

3. Perform Eigen decomposition on the

covariance matrix.

4. Select top principal components based

on explained variance.

5. Transform the dataset using the

selected components.

6. Return the reduced dataset.

Back-Propagation algorithm (Ogbeta and

Nwobodo, 2022);

1. Start

2. Parameters initialization

3. Set gradient loss tolerance = 1𝑒 − 106

4. Forward propagation:

5. Compute output of training samples

6. For Y output unit K

7. 𝛿𝑘 ← 𝑜𝑘 (1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)

8. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 𝑢𝑛𝑖𝑡 ℎ

9. 𝛿𝑘 ← 𝑜ℎ(1 − 𝑜𝑘) ∑ 𝑤ℎ,𝑘𝛿𝑘𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

10. Apply regularization algorithm to loss

function

11. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑛𝑒𝑢𝑟𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑗

12. 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗

13. 𝑤ℎ𝑒𝑟𝑒 ∆𝑤𝑖𝑗 = ŋ𝛿𝑗𝑥𝑖𝑗

14. 𝐸𝑛𝑑

Dropout Regularization algorithm (Salehin

and Kang, 2021)

1. Start

2. Input activation values

3. Parameter initialization (weight, bias,

drop rate 𝑝)

4. Generate probability vector (p) for

neurons layers

5. Choose probability vector as (0 and 1)

6. Apply dropout of neurons using

probability vector of neurons set to 0

7. Forward propagation with dropout

8. Compute the next layer activated value

9. Compute weight and bias sum of

dropout

10. Apply nonlinearity with 𝑡𝑎𝑛ℎ

activation function

11. Repeat for each layer

12. Update neural network training

13. End

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 774

The DNN Algorithm for Malware

Classification

1. Initialize network with input, hidden,

and output layers.

2. For each training iteration

3. Perform Forward Propagation to

compute predictions.

4. Compute the loss using a chosen loss

function.

5. Apply Back-propagation to update

weights.

6. Repeat until the model converges.

7. Return the trained model.

8. End

4. SYSTEM IMPLEMENTATION
The programming environment for developing

the fileless malware classification system was

chosen based on its ability to support machine

learning, deep learning, and optimization

techniques efficiently. Python was selected as

the primary programming language due to its

extensive ecosystem of libraries and

frameworks for data science, cybersecurity,

and artificial intelligence.

The development was carried out using

Jupyter Notebook and Google Colab,

providing an interactive coding environment

with cloud-based GPU acceleration for deep

learning model training. Essential libraries

such as TensorFlow and Keras were used for

deep learning, while Scikit-learn supported

traditional machine learning tasks like feature

selection and classification. Additionally,

NumPy and Pandas were utilized for efficient

data manipulation, and Matplotlib and

Seaborn helped visualize results. The

integration of these tools ensured a seamless

development process, from data pre-

processing and feature selection using the

AVOA to DNN training and evaluation.

4.1 System Testing

System testing is a crucial phase to evaluate

the functionality, reliability, and performance

of the fileless malware classification system.

This stage ensures that the implemented

system meets the defined requirements and

performs as expected under various

conditions. The testing process includes the

Test Plan, Test Data, and a comparison of

Actual vs. Expected Results.

4.2 Test Plan

The test plan outlines the approach for

validating the system’s effectiveness in

classifying fileless malware. The primary

objectives of testing include:

a. Verifying the accuracy and efficiency

of the AVOA-based feature selection

process.

b. Evaluating the deep learning

classification model to ensure high

detection rates.

c. Assessing system response time and

computational efficiency.

d. Ensuring the system correctly

identifies and quarantines detected

threats.

Different testing methodologies were applied,

including unit testing for individual modules,

integration testing to ensure seamless

interaction between components, and

performance testing to validate system

efficiency under various workloads.

4.3 Test Data

The test dataset was composed of 1000

samples, including a mix of normal system

processes, benign software, and fileless

malware. These data points were pre-

processed and subjected to feature selection

using AVOA, followed by classification using

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 775

a Deep Neural Network (DNN). The test data

included:

i. Feature vectors of normal files (e.g.,

system processes, legitimate

software).

ii. Feature vectors of malware samples

(fileless attacks, memory-based

threats).

iii. Augmented data generated using

synthetic techniques to improve

model robustness.

5. RESULT AND DISCUSSION
The system integration as software involves

the seamless incorporation of the fileless

malware detection model into a fully

functional software solution. This integration

ensures that the detection algorithm operates

efficiently within a real-world environment,

facilitating continuous monitoring and

analysis of malicious activities across different

operating systems. The software

implementation of the detection system was

tested on Windows, Linux, and macOS, where

it successfully scanned files, identified fileless

malware, and generated real-time alerts. The

graphical user interface provided an intuitive

platform for users to interact with the

detection model, allowing them to monitor

detection rates, analyze malware behaviours,

and manage security responses effectively.

Figure 2 presents the GUI interface of the

software.

Figure 2: The GUI interface of the software

Figure 2 presents the GUI interface of the

software for the classification of files

malware. This interface allows real-time

system scanning to detect malicious activities

like the fileless malware which has continued

to facilitate cyber-attack. To test the software

files from various operating system was

collected from windows, Linux and Mac IOS,

then imported them separately on the software

as shown in Figure 3.

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 776

Figure 3: Interface to load the test data samples

Figure 4: Interface showing the scanning process when tested on Windows IOS

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 777

Figure 5: Results of the scanning outcome on Windows IoS.

Figure 6: Result of scanning on Linux IOS

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 778

Figure 7: Result of scanning on Mac IOS.

In Figure 3, when the test data was imported

to the system, automatically the scanning

process began as shown in Figure 4, allowing

the DNN based fileless malware classifier to

perform scanning of features and classifying

fileless malware on the OS. In the Figure 5,

the result of the scanning process upon

completion was reported for Windows IOS,

Figure 6 reported result of scanning for Linux

IOS and Figure 7 was reported for Mac IOS

testing.

5.1 System Security

System security is a critical aspect of the

fileless malware classification system,

ensuring that the system remains protected

against cyber threats, unauthorized access, and

data breaches. Given that fileless malware

operates without traditional file-based

signatures, the security mechanisms

implemented in this system are designed to

detect, isolate, and mitigate such attacks while

maintaining system integrity.

The security implementation includes multiple

layers of protection, such as access control,

data encryption, and secure model execution.

Role-based authentication ensures that only

authorized users can access system

functionalities, preventing malicious actors

from tampering with the malware detection

process.

Additionally, encrypted communication

channels safeguard sensitive data during

model training and classification. To prevent

adversarial attacks, the system employs secure

model execution environments, where the

deep learning model is protected against

manipulation. The AVOA enhances security

by dynamically adapting feature selection to

counter evasion techniques used by malware

developers. Furthermore, real-time monitoring

detects anomalies in system behaviour,

automatically triggering an alert or quarantine

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 779

action when suspicious activity is identified.

Overall, the system security measures ensure

that the malware classification model remains

robust, resistant to attacks, and capable of

maintaining high detection accuracy in real-

world cybersecurity environments.

5.2 Training

The system training phase involves teaching

the malware classification model using a

carefully curate dataset of both benign and

malicious fileless malware samples. The

training process includes data pre-processing,

feature extraction using the AVOA,

dimensionality reduction with PCA, and

classification using a DNN. The system

undergoes multiple iterations to optimize its

accuracy, reducing false positives and

negatives. The model is evaluated using

performance metrics such as precision, recall,

F1-score, and accuracy to ensure robustness

before deployment.

5.3 Documentation

Comprehensive documentation is essential for

ensuring ease of use, maintenance, and future

upgrades of the system. The documentation

consists of:

1. User Manual: Provides step-by-step

guidance on how to operate the

malware detection system, including

input data formats, expected outputs,

and troubleshooting procedures.

2. Developer Documentation: Contains

detailed descriptions of the AVOA-

based feature selection model, deep

learning architecture, hyperparameter

tuning, and system APIs for future

enhancements.

3. System Architecture: Includes diagrams

illustrating the data flow, feature

extraction, classification pipeline, and

security protocols implemented.

4. Testing Reports: Provides results of

system testing, validation datasets, and

performance benchmarks, ensuring the

system meets security and efficiency

requirements.

6. CONCLUSION
This paper developed a robust approach for

detecting fileless malware using deep learning

techniques. The study leveraged data from two

primary sources such as the Cyber Dome,

which provided real-time attack data, and

Kaggle, which served as a supplementary

dataset for enhancing model robustness. The

collected data underwent a comprehensive

pre-processing phase, including integration

and cleaning, to ensure quality and

consistency. Feature selection was carried out

using the African Vulture Optimization

Algorithm (AVOA), which helped in

identifying the most relevant attributes while

reducing computational overhead. Further

dimensionality reduction was applied using

PCA to improve the efficiency of the detection

model. The refined dataset was then used to

train a DNN, which was designed to classify

and detect fileless malware accurately.

The software integrated with the developed

model was extensively tested on different

operating systems, such as Windows, Linux,

and mac-OS, to evaluate its generalization

ability across diverse environments. The

results demonstrated high detection accuracy

across all platforms, with notable success rates

of 99% for Windows, 96% for Linux, and

92% for mac-OS. Additionally, the classifier

maintained a low false alarm rate, ensuring

minimal disruption to legitimate processes.

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 780

Following model training and validation, the

deep learning-based detection system was

integrated into a software framework. This

integration facilitated real-time detection and

monitoring of fileless malware attacks across

different platforms. The system's effectiveness

was validated through rigorous testing on

various operating systems, confirming its

capability to detect and mitigate fileless

malware threats efficiently.

This study provides a significant advancement

in cybersecurity, particularly in combating

fileless malware threats that do not rely on

traditional file-based execution. The findings

underscore the potential of deep learning in

strengthening endpoint security and offer a

scalable approach to protecting computing

environments against sophisticated cyber

threats.

7. REFERENCES
Abdollahzadeh, B., Gharehchopogh, F. S.,

&Mirjalili, S. (2021). African vultures

optimization algorithm: A new nature-

inspired metaheuristic algorithm for

global optimization problems.

Computers and Industrial Engineering,

158, 107408.

https://doi.org/10.1016/j.cie.2021.10740

8

Atapattu, M., & Jayawardena, B. (2021). An

approach to detect fileless malware that

maintains persistence in Windows

environment. Proceedings of the

International Conference on Advances in

Computing and Technology (ICACT),

Kelaniya, Sri Lanka.

Dang, F., Li, Z., Liu, Y., Zhai, E., Chen, Q. A.,

Xu, T., Chen, Y., & Yang, J. (2019).

Understanding fileless attacks on Linux-

based IoT devices with HoneyCloud.

Proceedings of the 17th Annual

International Conference on Mobile

Systems, Applications, and Services,

Seoul, South Korea. ACM, 482–493.

https://doi.org/10.1145/3307334.332608

3

Kaspersky Security Bulletin 2022. (2022).

Statistics. Kaspersky Security Bulletin.

Available at: https://securelist.com/ksb-

2022-statistics/108129/ (Accessed on 29

November 2023).

Mohanta, A., & Saldanha, A. (2020). Malware

analysis and detection engineering: A

comprehensive approach to detect and

analyze modern malware. Springer.

https://doi.org/10.1007/978-1-4842-

6193-4

Obini, C., Jeremiah, C., & Igwe, S. A. (2024).

Development of a machine learning-

based FM filter system for

cybersecurity. J 2192. Nig. Soc.

Physiological Sciences, 6.

Ogbeta, L. K., & Lois, N. (2023). Neuro-

based strategy for real-time protection of

wireless network ecosystem against

DDoS attack. I1SRED, ISSN 2581-

7175, 79–98.

Pechenizkiy, M., Tsymbal, A., &Puuronen, S.

(2004). PCA-based feature

transformation for classification: Issues

in medical diagnostics. 17th IEEE

Symposium on Computer-Based

Medical Systems, Bethesda, USA, 535–

540.

https://doi.org/10.1109/CBMS.2004.131

1770

Salehin, I., & Kang, D. K. (2023). A review on

dropout regularization approaches for

deep neural networks within the

scholarly domain. Electronics, 12, 3106.

https://doi.org/10.3390/electronics12143

106

Siddiqui, A. A., Ali, I., Arbab, S., & Kumari,

S. (2024). Efficient malware

investigation and recognition using

machine learning algorithms. Asian

Bulletin of Big Data Management, 4.

https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1145/3307334.3326083
https://doi.org/10.1145/3307334.3326083
https://securelist.com/ksb-2022-statistics/108129/
https://securelist.com/ksb-2022-statistics/108129/
https://doi.org/10.1007/978-1-4842-6193-4
https://doi.org/10.1007/978-1-4842-6193-4
https://doi.org/10.1109/CBMS.2004.1311770
https://doi.org/10.1109/CBMS.2004.1311770
https://doi.org/10.3390/electronics12143106
https://doi.org/10.3390/electronics12143106

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +2348065375935 781

https://doi.org/10.62019/abbdm.v4i3.20

9

Singh, J., Thakur, D., Ali, F., Gera, T., &

Kwak, K. S. (2020). Deep feature

extraction and classification of Android

malware images. Sensors, 20, 7013.

https://doi.org/10.3390/s20247013

Snow, D. (2021). Investigating fileless

malware [PhD thesis]. Utica College.

Tekiner, E., Acar, A., Uluagac, A. S., Kirda,

E., & Selcuk, A. A. (2021). SoK:

Cryptojacking malware. Proceedings of

the 2021 IEEE European Symposium on

Security and Privacy (EuroS&P),

Vienna, Austria. IEEE, 120–139.

https://doi.org/10.1109/EuroSP51992.20

21.00019

https://doi.org/10.62019/abbdm.v4i3.209
https://doi.org/10.62019/abbdm.v4i3.209
https://doi.org/10.3390/s20247013
https://doi.org/10.1109/EuroSP51992.2021.00019
https://doi.org/10.1109/EuroSP51992.2021.00019

	2. SYSTEM DEVELOPMENT METHODOLOGY
	2.1 Data Acquisition
	2.2 Feature Engineering
	2.3 The System Submenus

	3. THE PROPOSED DEEP NEURAL NETWORK MODULE
	3.1 System Algorithms

	4. SYSTEM IMPLEMENTATION
	4.1 System Testing
	4.2 Test Plan
	4.3 Test Data

	5. RESULT AND DISCUSSION
	5.1 System Security
	5.2 Training
	5.3 Documentation

	6. CONCLUSION
	7. REFERENCES

