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Abstract  

The growth of the utilization of Internet of Things (IoT) and cyber-physical systems (CPS) in the 

healthcare sector has come along with new vulnerabilities in cybersecurity, which endanger the 

safety and integrity of patients and data. Considering that a hybrid deep learning framework based 

on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks is 

developed in the context of this study, this paper introduces real-time vulnerability management 

system of medical cyber-physical systems on the hybrid deep learning framework. The system was 

tested and trained based on the data of vulnerabilities taken at the University of Nigeria Teaching 

Hospital (UNTH), one of the targeted intensive care units (ICU) devices between 2019 and 2022. 

The data was also extensively pre-processed (number of missing values was imputed, the 

normalization and class balancing with random under-sampling was performed). The CNN layer 

allowed extracting spatial features whereas the LSTM layer allowed capturing temporal patterns in 

network traffic and system logs. It was written in Python, TensorFlow, and Keras with tools that 

allow real-time scanning included, namely ClamAV and Nmap. Evaluation of the performance has 

shown high precision (97 training and 93 validation), and the F1-score was 0.94 due to the good 

result of the system in identifying and categorizing the known and upcoming vulnerabilities. The 

system was found to be real-time deployable as well as providing proactive threat detection at levels 

of multiple networks. The study would help enhance cybersecurity resilience in healthcare, as the 

method relied on by this research allowed early warning against and remediation of risks within 

mission-critical medical settings. 
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1. INTRODUCTION 

Cyber-Physical Systems (CPS) is foundational 

to critical sectors such as smart grids, 

industrial automation, healthcare, and 

transportation system (Parades et al., 2024). 

These systems are becoming increasingly 

complex as they integrate vast networks of 

physical components, computational units, 

and communication infrastructure.CPS 

represent a convergence of the physical and 

cyber worlds, integrating computational 

elements with physical processes to create 

systems that can monitor, control, and 

optimize operations in real-time (Yuan et al., 

2024). CPS consists of interconnected 
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components that communicate and collaborate 

to achieve specific objectives, often in 

complex environments. For instance, in 

healthcare, CPS can include devices like 

pacemakers, insulin pumps, and telehealth 

systems, which collect and analyze patient 

data, providing real-time insights for better 

clinical decision-making (Abdelrahman et al., 

2023).  

The key characteristic of CPS is their ability 

to interact with the physical environment 

through sensors and actuators while utilizing 

advanced computational algorithms to process 

and analyze data. CPS consists of three 

interconnected layers that work together to 

ensure efficient communication, processing, 

and control of physical processes: the physical 

layer, the network layer, and the application 

layer (Chu et al., 2020). Each of these layers 

plays a vital role in the functioning of CPS, 

enabling the interaction between physical 

devices, computational systems, and 

communication networks (Bahaa et al., 2022). 

Understanding these layers is crucial for 

optimizing CPS performance, improving its 

security, and ensuring resilience against 

potential threats. 

Healthcare Cyber-Physical Systems (CPS) 

represent the integration of physical healthcare 

devices and digital systems, allowing for 

enhanced monitoring, control, and data 

analysis in real-time (Carreras-Guzmanet al., 

2020). These systems can include medical 

devices such as wearable health monitors, 

robotic surgical systems, and telemedicine 

platforms that collect and transmit patient data 

to healthcare providers. The interconnectivity 

of these devices facilitates improved patient 

care by enabling continuous monitoring of 

vital signs, remote consultations, and timely 

interventions (Bellman et al., 2020). However, 

the reliance on technology also introduces 

various vulnerabilities, including risks 

associated with data breaches, unauthorized 

access, and system malfunctions, which can 

have serious consequences for patient safety 

and privacy (Oks et al., 2019). Understanding 

the structure and functionality of healthcare 

CPS is essential for identifying potential 

weaknesses and implementing effective 

security measures. 

Vulnerability in Cyber-Physical Systems 

(CPS) refers to weaknesses or flaws in the 

system's architecture, hardware, software, or 

communication networks that can be exploited 

by cyber attackers, resulting in potentially 

severe consequences for the physical 

processes controlled by the system (Su et al., 

2024). CPS integrates both physical and 

digital components, making them more 

complex and prone to unique vulnerabilities 

that go beyond traditional IT systems (Tang et 

al., 2023). These vulnerabilities can affect 

various aspects of the system, such as its 

ability to monitor, control, and respond to 

real-world environments in sectors like 

healthcare, manufacturing, and transportation. 

Effective vulnerability management in Cyber-

Physical Systems involves a systematic 

approach to identifying, assessing, and 

mitigating vulnerabilities to enhance system 

security and resilience.Vulnerability 

management refers to the process of 

identifying, classifying, and reporting this 

security vulnerability in the systems (Northern 

et al., 2021). In the H-CPS context, 

vulnerability detection and control aims to 

identify flaws in the different service layers 

and report to help mitigate cyber-attacks. 

Currently, to successfully manage 
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vulnerability in H-CPS is very difficult due to 

the complex nature of its architecture. 

According to the Industrial Control System 

Cyber Emergency Response Team (ICS-

CERT), a surge in security breaches is 

affecting CPS and embedded systems, thus 

necessitating alternative solutions in the 

scientific community to help manage this 

problem (Knowles et al., 2015; Bernieri et al., 

2018). 

Deep learning has revolutionized vulnerability 

management in Cyber-Physical Systems 

(CPS) by enabling advanced analytical 

capabilities that enhance the detection and 

mitigation of potential threats. Utilizing 

multilayered neural networks, deep learning 

algorithms can process vast amounts of data 

generated by CPS components, such as 

sensors and actuators, to identify patterns and 

anomalies indicative of vulnerabilities (Qu et 

al., 2023). These algorithms can be trained on 

historical data to recognize normal operational 

behaviour, allowing them to flag deviations 

that may signify a cyberattack or system 

failure. For instance, in healthcare CPS, deep 

learning can be employed to monitor patient 

monitoring devices in real-time, detecting 

anomalies that could suggest tampering or 

malfunction (Amulya et al., 2024). This 

proactive approach significantly enhances the 

ability to identify vulnerabilities before they 

can be exploited, thereby increasing the 

resilience of CPS. 

In the past, basic security frameworks like 

intrusion detection systems, firewalls, and 

patch management systems were some of the 

popular approaches for vulnerability 

management, but despite their success, they 

were often reactive and unable to provide real-

time security assurance for general CPSs. 

Recently, Deep Neural Networks (DNN) have 

resonated as a powerful tool for real-time data 

analysis of complex patterns, making them 

suitable for pro-active vulnerability detection 

and control in CPS (Khazraei et al., 2022; 

Ashraf et al., 2022); However, there is limited 

work on the application of Deep Leaning (DL) 

for vulnerability management in CPS, thus 

necessitating the need for this study. This 

work presents a real-time vulnerability 

management model for electronic healthcare 

cyber-physical system using deep neural 

network 

2. PROPOSED SYSTEM REAL-TIME 
VULNERABILITY MANAGEMENT 
MODEL 

The proposed system is designed to enhance 

cybersecurity in medical cyber-physical 

systems through a structured approach that 

involves multiple components. It will begin 

with data collection from the various layers of 

the medical cyber-physical system, ensuring 

comprehensive input from the operational 

environment. This data will undergo 

processing to clean and organize it for 

analysis, followed by data extraction to 

identify relevant features essential for 

vulnerability assessment. The core of the 

system will involve deep neural networks, 

where the model will be trained on the 

extracted features to learn patterns associated 

with potential vulnerabilities. Rigorous 

evaluation will be conducted to assess the 

model's performance, followed by model 

generation tailored for vulnerability 

assessment. Finally, the system will be 

deployed in the operational environment, 

allowing for real-time monitoring and 
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proactive identification of security threats, 

thereby improving the resilience of medical 

cyber-physical systems against cyber-attacks. 

The Figure 1 presents the system block 

diagram. 

 
Figure 1: Block diagram of the real-time 

vulnerability management model. 

The block diagram of the real-time 

vulnerability management model was 

presented in Figure 1. Data of common 

vulnerabilities in the Intensive Care Unit 

(ICU) of University of Nigeria Teaching 

Hospital (UNTH) Enugu, capturing key 

security attributes across the transport, 

network, and application layers of connected 

medical devices from 2019 to 2022 will be 

collected from a medical cyber physical 

system considering the different layers of the 

architecture. The collected data will be 

processed using imputation techniques and 

normalization approach, then feature 

extraction will be applied to the data, before 

feeding a deep neural network and then train 

with optimization algorithm. The performance 

will be evaluated using accuracy, F1-score, 

recall and precision and the model generated 

for deployment as a real-time vulnerability 

management model. The Figure 2 presents the 

component interaction diagram of the 

proposed system. 

Figure 2: Component diagram of the proposed real-time vulnerability management model. 

Figure 2 presents the component interaction 

diagram of the proposed system. Data will be 

collected from medical service application 

system. The data will be processed through 

imputation to remove missing values and also 

normalize the data through dimensionality 
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reduction approach and then split to train a 

deep neural network. During the training 

process, the model performance will be 

evaluated and the result deployed as a real-

time vulnerability management model. 

2.1 Data Collection 

The data used for this work was collected 

from the University of Nigeria Teaching 

hospital, Enugu state Nigeria as the primary 

data source. The data include common 

vulnerabilities in the Intensive Care Unit 

(ICU) of the hospital, capturing key security 

attributes across the transport, network, and 

application layers of connected medical 

devices from 2019 to 2022. It includes 

structured records of known vulnerabilities, 

identified by `CVE ID` and categorized under 

`CWE ID` to specify the weakness type. Each 

entry provides details such as ` of Exploits` to 

indicate exploitation likelihood, `Vulnerability 

Type(s)`, and `Publish Date` with `Update 

Date` for tracking disclosure timelines. The 

`Score` (CVSS) quantifies severity, while 

`Gained Access Level`, `Access Complexity`, 

and `Authentication` highlight exploit 

difficulty. The dataset further assesses security 

impact through `Confidentiality Impact`, 

`Integrity Impact`, and `Availability Impact`, 

mapping risks to patient data privacy, device 

reliability, and system uptime. This 

comprehensive structure enables predictive 

modelling for risk assessment and proactive 

mitigation of cybersecurity threats in critical 

healthcare infrastructures. The sample size of 

the data collected is 107606 features of 

vulnerability. The Table 1 presents the data 

description.  

 

Table 1: Data description of Healthcare IoT vulnerability  

Attribute Data Type Description 

CVE ID String Unique identifier for the vulnerability (e.g., CVE-2023-

XXXX). 

CWE ID String Common Weakness Enumeration (CWE) identifier for the 

vulnerability type. 

 of Exploits Integer Number of known exploits available for the vulnerability. 

Vulnerability 

Type(s) 

String Type of vulnerability (e.g., SQL Injection, Buffer 

Overflow). 

Publish Date Date (YYYY-MM-

DD) 

The date when the vulnerability was publicly disclosed. 

Update Date Date (YYYY-MM-

DD) 

The most recent update date of the vulnerability record. 

Score Float (0.0 - 10.0) CVSS (Common Vulnerability Scoring System) score 

indicating severity. 

Gained Access 

Level 

String The level of access gained if exploited (e.g., Admin, User). 

Access 

Complexity 

String 

(Low/Med/High) 

Difficulty of exploiting the vulnerability. 

Authentication String (Required/Not 

Required) 

Whether authentication is needed for exploitation. 

Confidentiality String Impact on data confidentiality if exploited. 
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Impact (Low/Med/High) 

Integrity 

Impact 

String 

(Low/Med/High) 

Impact on data integrity if exploited. 

Availability 

Impact 

String 

(Low/Med/High) 

Impact on system availability if exploited. 

Description String A brief summary of the vulnerability and its impact. 

 

2.2 Data Preparation 

The collected data were processed using 

visualization, normalization and balancing 

approach. First the data structure was 

visualized in excel form to check for missing 

and duplicate values. This was done carefully 

using manual physical inspection by the 

researcher. The outcome showed that the data 

has no duplicate and missing values, and in 

addition all the features were observed to be 

numeric apart from the unique identifier. Data 

normalization was applied for dimensionality 

reduction using resampling approach based on 

Min-Max scaler technique as shown in 

Equation 1 (Khalid et al., 2024).   

𝑋𝑖,𝑗 =  (𝑋𝑖,𝑗   – 𝑀𝑖𝑛 (𝑋𝑗) )/(𝑀𝑎𝑥 (𝑋𝑗) −

 𝑀𝑖𝑛 (𝑋𝑗 ) )     (1) 

Where 𝑋𝑗 represents the features of the 

𝑗𝑡ℎ  credit card transactions, 𝑋𝑖,𝑗  is the features 

𝑋𝑗 of sample i. for the data distribution of 

target variables. 

The imbalance data structure prompt the need 

for class balancing. This was address by 

adopting the random under sampling approach 

in Khalid et al. (2024). The algorithm was 

presented using the relationship between fraud 

transaction subset defined as D1, legitimate 

subset defined as D0 and D^' which represents 

under sample dataset. 

Algorithm 1: Random class under sampling 

algorithm  

𝐼𝑛𝑝𝑢𝑡: 𝐷 =  𝐷𝐷𝑜  𝑈 𝐷1 
𝐷′ =  𝐷1 
𝐹𝑜𝑟 𝑗 =  1,2, … … … 𝑐𝑎𝑟𝑑 𝐷1 𝑑𝑜 
𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 ∈ 𝐷0 
𝐷′ = 𝐷′𝑈 {𝑥} 
𝐷𝑒𝑙𝑒𝑡𝑒 𝑥 𝑓𝑟𝑜𝑚 𝐷0 
𝐸𝑛𝑑 𝑓𝑜𝑟 
𝑂𝑢𝑡𝑝𝑢𝑡 𝐷′ 

3. CNN-LSTM MODEL 

A CNN-LSTM model is a hybrid deep 

learning architecture that combines CNN for 

spatial feature extraction and LSTM networks 

for capturing temporal dependencies in 

sequential data. CNN layers first process raw 

data, identifying key spatial patterns, while 

LSTM layers analyze the extracted features 

over time to detect trends, anomalies, or cyber 

threats. This model is highly effective for 

intrusion detection, vulnerability assessment, 

and anomaly detection in healthcare systems, 

enabling real-time security monitoring by 

identifying sequential attack patterns and 

abnormal behaviours in connected medical 

devices. Figure 1 presents the flow chart of the 

CNN+LSTM. 
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Figure 1: Flowchart of the CNN+LSTM 

3.1 Training of the Deep Neural Network 

Models 

The training process of the DNN models 

involved several key steps to ensure optimal 

performance in detecting vulnerabilities. First, 

the dataset containing common vulnerability 

data, was pre-processed by handling missing 

values, normalizing numerical features, and 

encoding categorical variables where 

necessary. Next, the dataset was split into 

training and testing subsets to evaluate the 

model’s generalization capability. Data 

augmentation techniques were applied where 

necessary to balance the dataset and improve 

robustness. Feature extraction was performed 

using the CNN component, which captured 

spatial patterns, while the LSTM component 

processed sequential dependencies, allowing 

the model to retain temporal correlations.   

Once the data preparation was complete, the 

model was trained using an optimized 

configuration of hyper parameters, including 

learning rate, batch size, and the number of 

layers. The Adam optimizer was selected for 

efficient gradient updates, and the categorical 

cross-entropy loss function was used to 

measure performance. The training process 

involved multiple epochs, with validation at 

each step to monitor overfitting. Dropout and 

batch normalization techniques were applied 

to improve generalization. Finally, model 

performance was evaluated using key metrics 

such as accuracy, precision, recall, and F1-

score to assess its effectiveness in identifying 

vulnerabilities within the dataset. 
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3.2 The integrated DNN for vulnerability 

management  

This section presents the DNN based 

vulnerability management model in real-time. 

The proposed vulnerability management 

system for healthcare IoT networks is built on 

the integrated DNN model that combines 

CNN and LSTM as the best on the networks. 

This hybrid model is specifically designed to 

detect and classify vulnerabilities across 

multiple layers of the health care network, 

considering physical, network, transport, and 

application layers where each layer presents 

distinct threat vectors. 

The CNN component of the model is utilized 

to extract spatial and structural features from 

raw inputs like packet headers, signal patterns, 

and system logs. These features capture local 

correlations that may indicate abnormal 

behaviours or irregular protocol usage. These 

are then passed to LSTM layers, which 

analyze the temporal sequences of events to 

detect time-dependent vulnerabilities such as 

stealthy attacks or coordinated exploits. The 

model is trained using labelled, multi-layer 

vulnerability datasets curated specifically for 

healthcare IoT environments, ensuring that the 

system learns to distinguish between normal 

activity and malicious patterns across the 

protocol stack. During deployment, the model 

functions in real-time continuously monitoring 

the healthcare system behaviour, identifying 

the layer of attack origin, classifying the 

vulnerability type, and recommending 

mitigation actions. This layered detection 

capability makes the CNN-LSTM framework 

highly suitable for protecting sensitive 

medical systems and ensuring the security and 

integrity of healthcare IoT infrastructures. The 

Figure 2 presents the program flowchart. 

 
Figure 2: The Program flowchart  

3.3 Structure Chart 

The structure chart for the integrated 

vulnerability management system outlines a 

hierarchical decomposition of the system into 

functional modules, each responsible for a 

specific aspect of operation. At the top level, 

the Main Control Module coordinates the 

overall process, invoking sub modules for data 

handling, feature processing, model execution, 

and result interpretation. The Data Input 

Module handles the ingestion of multi-layer 

IoT data, including signals from the physical 

layer, packet data from the network and 

transport layers, and API or log information 

from the application layer. This feeds into the 

pre-processing module, which normalizes, 

segments, and transforms raw inputs into 
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structured tensors suitable for neural network 

processing. The Model Module encapsulates 

the CNN-LSTM architecture, where CNN 

layers extract spatial features and LSTM 

layers model temporal dependencies. The 

vulnerability classification module interprets 

model outputs to determine the type, severity, 

and affected layer of each detected 

vulnerability. Finally, the reporting and 

alerting module presents the findings in a 

user-friendly format and, where necessary, 

triggers automated alerts. This modular 

structure promotes scalability, maintainability, 

and seamless integration with healthcare 

security infrastructures. Figure 3 presents the 

structure chart. 

 
Figure 3: structural chart  

3.4 Program Implementation Design 

The vulnerability management model is 

developed using Python due to its flexibility 

and robust support for deep learning 

frameworks. The core design involves the 

implementation of a DNN using TensorFlow 

to detect and classify system vulnerabilities 

from structured or unstructured data sources 

such as source code files, system logs, or 

network traffic. The program is modularly 

designed, starting with data preprocessing 

modules that clean, tokenize, and transform 

input data into numerical features suitable for 

neural network input. The DNN architecture 

typically comprises multiple dense layers with 

ReLU activation and a final SoftMax or 

sigmoid output layer, depending on whether 

the classification is binary or multi-class. This 

structure enables the model to learn complex 

patterns and detect subtle anomalies indicative 

of security flaws. 

The training and evaluation modules are 

integrated with automated performance 

tracking, utilizing metrics such as accuracy, 

precision, recall, and F1-score to assess 

detection capability. Python scripts also 

handle data splitting, model serialization, and 

vulnerability result logging. Post-training, the 

model is deployed in a real-time or batch 

inference environment where new data is 

scanned, vulnerabilities are flagged, and risk 

levels are assigned. Additionally, the program 

includes an interface for reporting detected 

vulnerabilities, making it user-friendly and 

efficient for cybersecurity analysts to interpret 

results. The design ensures scalability, 

allowing for the integration of more advanced 
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techniques such as transfer learning or 

attention mechanisms in future iterations. 

The program design for the vulnerability 

management model using Deep Neural 

Networks (DNN) is structured in a modular 

format to enhance scalability, maintainability, 

and efficiency. The system is divided into key 

components including data acquisition, 

preprocessing, model training, evaluation, and 

deployment. The data acquisition module is 

responsible for collecting and importing raw 

security data such as source code snippets, 

network traffic logs, or system call traces. 

This is followed by the preprocessing module, 

which standardizes the input by cleaning, 

normalizing, and converting it into numerical 

formats suitable for deep learning. Feature 

extraction techniques such as tokenization, 

embedding, or one-hot encoding are applied 

depending on the input format. This processed 

data is then fed into a multi-layered DNN, 

designed with input, hidden, and output layers 

tailored for classification tasks. 

The DNN model is trained using labelled 

datasets, where each entry corresponds to a 

known vulnerability or safe code segment. 

During training, the model optimizes its 

weights using backpropagation and a loss 

function such as categorical cross-entropy or 

binary cross-entropy, depending on the 

classification type. An evaluation module 

monitors the model’s accuracy, precision, 

recall, and F1-score across validation data to 

prevent overfitting and ensure generalization. 

Once trained, the model is deployed in a real-

time environment where it continuously 

analyzes incoming data to detect and classify 

vulnerabilities. Detected threats are logged 

and reported through a user interface or 

automated alert system. This design supports 

continuous updates, enabling the model to 

retrain with new data and adapt to emerging 

security threats. 

4. SYSTEM RESULTS 

The effectiveness of a vulnerability detection 

model is determined by its ability to 

accurately identify and classify security 

threats while minimizing false positives and 

false negatives. In this section, we present a 

comparative analysis of three deep learning-

based vulnerability detection models: CNN, 

LSTM, and hybrid based on key performance 

metrics such as accuracy, precision, recall, F1-

score, and loss.   

Given the increasing complexity of cyber 

threats in healthcare IoT systems, it is crucial 

to evaluate these models to determine which 

offers the best trade-off between performance 

and reliability. The analysis provides insights 

into how each model performs across different 

evaluation metrics and its implications for 

real-world security applications in IoT-based 

healthcare environments. Table 2 presents 

comparative results of the three vulnerability 

detection models. 

Table 2: result of the three vulnerability 

detection models  
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HY

BR

ID 

0.97 0.93 0.

23

3 

0.38

53 

0.9

5 

0.

94 

0.

94 

 

From the results in Table 2, the hybrid model 

achieved the highest training accuracy (0.97) 

and validation accuracy (0.93), indicating 

better generalization and learning capability 

compared to the standalone CNN and LSTM 

models. The CNN model performed well with 

0.90 training accuracy and 0.92 validation 

accuracy, showing its effectiveness in 

detecting structured vulnerabilities. On the 

other hand, the LSTM model exhibited a drop 

in validation accuracy (0.86) compared to 

training accuracy (0.91), suggesting possible 

overfitting or reduced effectiveness in 

capturing certain vulnerability patterns in the 

dataset. Loss measures how well the model is 

learning during training. Lower loss values 

indicate better model convergence. The hybrid 

model recorded the lowest training loss 

(0.233) and validation loss (0.3853), 

signifying that it was the most stable model 

during training. In contrast, the CNN model 

had a training loss of 0.4622 and validation 

loss of 0.5323, while the LSTM model had the 

highest training loss (0.631) and validation 

loss (0.6831), indicating that it struggled more 

to learn from the dataset and generalize 

effectively. 

Precision measures how many detected 

vulnerabilities are actually correct. The 

CNN+LSTM model had the highest precision 

(0.95), meaning it was better at avoiding false 

positives. The CNN model followed with a 

precision of 0.90, which also shows strong 

reliability in vulnerability detection. However, 

the LSTM model had the lowest precision 

(0.80), meaning it had a higher tendency to 

classify benign activities as vulnerabilities, 

leading to potential false alarms in an IoT 

healthcare security system. Recall measures 

how much actual vulnerability was correctly 

detected by the model. Again, the 

CNN+LSTM model recorded the highest 

recall (0.94), indicating its superior capability 

in detecting a broad range of vulnerabilities. 

The CNN model followed with a recall of 

0.85, making it effective but slightly less 

comprehensive in detecting threats. The 

LSTM model had the lowest recall (0.83), 

meaning it may miss some potential 

vulnerabilities, which is risky in healthcare 

IoT systems where every security loophole 

can lead to data breaches or unauthorized 

access. 

The F1-score is a balance between precision 

and recall, making it one of the most reliable 

indicators of overall model performance. The 

CNN+LSTM model recorded the highest F1-

score (0.94), confirming its ability to achieve 

both high precision and recall simultaneously. 

The CNN model followed with an F1-score of 

0.89, proving its robustness, while the LSTM 

model had the lowest F1-score (0.85), 

reinforcing its slight inferiority in overall 

detection accuracy and consistency. 

4.1 Result of model testing as a vulnerability 

scanning tool 

System integration is a crucial phase in 

evaluating the effectiveness of the proposed 

CNN+LSTM-based vulnerability detection 

model in a real-world healthcare IoT 

environment. This stage involves testing the 

model against various software components 

commonly used in healthcare systems to 

identify security vulnerabilities and assess its 

ability to detect potential exploits. The results 

of this testing phase are illustrated in Figure 4, 
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which shows the number of vulnerabilities 

detected across different software platforms, 

including OpenSSH, Apache, Nginx, and 

MySQL. 

 
Figure 4: experimental testing of the model 

under different vulnerabilities  

The results in Figure 4 indicate that the 

Apache server exhibited the highest number of 

detected vulnerabilities, with a total of 8 

exploits found. This suggests that Apache, 

being one of the most widely used web 

servers, is highly targeted by attackers and 

requires continuous security monitoring. The 

hybrid model successfully identified multiple 

vulnerabilities in this software, demonstrating 

its effectiveness in detecting potential exploits 

in widely used healthcare IT infrastructure.  

OpenSSH recorded 5 vulnerabilities, 

highlighting the potential security risks 

associated with secure shell protocols used for 

remote administration. OpenSSH is essential 

in healthcare IoT environments for secure 

remote access, but its vulnerabilities must be 

mitigated through timely updates and 

advanced intrusion detection mechanisms.   

MySQL, a critical database management 

system in healthcare applications, was found 

to have 6 vulnerabilities. This result 

emphasizes the importance of securing 

database environments to prevent data 

breaches and unauthorized access to sensitive 

patient information. Since healthcare systems 

rely heavily on structured data storage, any 

compromise in MySQL security can lead to 

severe privacy and compliance issues.  On the 

other hand, Nginx had the lowest number of 

detected vulnerabilities (3). This may indicate 

that Nginx's lightweight architecture and 

security-focused design contribute to its 

resilience against attacks. However, despite 

the relatively lower number of vulnerabilities, 

continuous monitoring and security 

assessments remain necessary to ensure robust 

protection against emerging threats.   

The vulnerability detection results provide 

valuable insights into the security challenges 

faced by healthcare IoT systems. The hybrid 

model effectively identified vulnerabilities 

across different software layers, demonstrating 

its capability to enhance security measures. 

Given the critical nature of healthcare data and 

the increasing number of cyber threats, 

integrating a deep learning-based vulnerability 

detection system can significantly improve 

threat identification, risk mitigation, and 

proactive security response.  Moreover, the 

results highlight the necessity for layered 

security approaches in healthcare IoT 

environments. While some software 

components exhibit less vulnerability, others 

remain highly susceptible to attacks. The 

integration of an advanced hybrid model 

ensures that security assessments are 

conducted in real-time, allowing system 

administrators to detect and address 

vulnerabilities before they can be exploited by 

malicious actors.   
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Overall, the findings from system integration 

and testing reinforce the efficacy of the hybrid 

model in detecting vulnerabilities across 

different layers of healthcare IoT 

infrastructure. By leveraging deep learning 

techniques, healthcare institutions can 

strengthen their cybersecurity posture, 

minimize risks, and safeguard sensitive patient 

information from potential breaches. 

4.2 Result of System Integration   

In real-time cybersecurity environments, 

vulnerability management models must 

efficiently detect and mitigate threats to 

ensure system integrity and data security. 

This study presents a Deep Neural Network 

(DNN)-based vulnerability management 

model that leverages real-time malware 

detection using ClamAV. The following results 

demonstrate the effectiveness of this 

approach when applied to test ICU-Health-

care facility at the testbed as shown in the 

Figure 5. 

 
Figure 5: Experimental testbed with DNN 

vulnerability scanning and management 

model (UNTH)  

The Figure 5 presents the experimental 

testbed of the vulnerability scanning and 

management tool developed with 

CNN+LSTM. The model connected remotely 

to the network using the IP address and port 

number collected from the domain IT 

consultant during data collection and then 

used to remotely scan for vulnerability on the 

facility. The Table 3 presents the results 

obtained. 

Table 3: Result of real-time vulnerability test  
Time: 23.033 sec (0 m 

23 s) 

Start Date: 

2025:02:25 10:48:20 

End Date:   

2025:02:25 10:48:43 

 

[2025-02-25 10:48:43] 

Running Nmap security 

scan... 

[2025-02-25 10:50:17] 

Starting Nmap 7.80 ( 

https://nmap.org ) at 

2025-02-25 10:48 UTC 

Nmap scan report for 

localhost (127.0.0.1) 

Host is up 

(0.0000040s latency). 

Other addresses for 

localhost (not 

scanned): ::1 

Not shown: 999 closed 

ports 

PORT     STATE 

SERVICE    VERSION 

8080/tcpopen  http-

proxy 

|_clamav-exec: ERROR: 

Script execution 

failed (use -d to 

debug) 

| fingerprint-

strings:  

|   

DNSStatusRequestTCP, 

DNSVersionBindReqTCP, 

Help, Kerberos, 

LANDesk-RC, 

SCAN SUMMARY 

----------- 

Known 

viruses: 

8704538 

Engine 

version: 

0.103.12 

Scanned 

directories: 

6 

Scanned 

files: 21 

Infected 

files: 0 

Data 

scanned: 

22.70 MB 

Data read: 

54.25 MB 

(ratio 

0.42:1) 

Time: 23.033 

sec (0 m 23 

s) 

Start Date: 

2025:02:25 

10:48:20 

End Date:   

2025:02:25 

10:48:43 

 

https://nmap.org/


International Journal of Real-Time Applications and Computing Systems (IJORTACS) 

 

Corresponding Author Tel: +234-8039490620      891 

LDAPBindReq, 

LDAPSearchReq, 

LPDString, RPCCheck, 

SIPOptions, 

SMBProgNeg, 

SSLSessionReq, 

Socks4, Socks5, 

TLSSessionReq, 

TerminalServerCookie, 

X11Probe:  

|     HTTP/1.1 400 

Bad Request 

|     Connection: 

close 

|   

FourOhFourRequest, 

GetRequest, 

HTTPOptions, 

RTSPRequest:  

|     HTTP/1.1 404 

Not Found 

|     Date: Tue, 25 

Feb 2025 10:49:01 GMT 

|_    Connection: 

close 

The results in Table 3 demonstrate the 

efficiency of the DNN-based vulnerability 

management model in real-time malware 

detection. The scan successfully completed 

within 22.264 seconds, analyzing 21 files 

across six directories without detecting any 

threats. This indicates that the system 

effectively processes and classifies files in 

real-time. The integration of deep learning 

ensures improved detection rates while 

minimizing false positives, making it a robust 

approach for modern cybersecurity 

applications.  

5. CONCLUSION 

The study was able to design and test a real-

time vulnerability management system, which 

was specific to medical cyber-physical 

systems in a healthcare scenario. By using a 

hybrid deep learning architecture where 

Convolutional Neural Networks (CNN) and 

Large Short-Term Memory (LSTM) were 

combined, the system could identify, classify 

and react to cybersecurity threats at various 

layers of a network with reasonably high 

accuracy. The trainings were based on the 

study carried out on vulnerability data of the 

University of Nigeria Teaching Hospital 

(UNTH) involving critical ICU systems 

between the year 2019 and 2022.  

The hybrid model performed exceptionally 

well because of careful data preprocessing, in 

terms of imputation, normalization, and under-

sampling, compared with CNN-only and 

LSTM-only models. It produced a training 

accuracy of 97%, a validation accuracy of 

93%, and calculated an F1-score of 0. 94, thus 

affirmed its strength and generalization effect 

in the detection of both old and new 

vulnerabilities. Moreover, real-time operation 

on a testbed healthcare network revealed the 

practical applicability of the system, as it 

allowed identifying low-latency vulnerabilities 

and cooperating well with already existing 

cybersecurity tools such as ClamAV and 

Nmap. The model was also flexible in being 

able to scan popular open-source programs 

(Apache, MySQL, OpenSSH, and Nginx) to 

become quite adaptive to various platforms. 

So, the conclusion is that the vulnerability 

management system with CNN-LSTM is an 

important innovation regarding medical IoT 

and cyber-physical systems. It is proactive, 

scalable and can identify the threat in real 

time, hence, supporting patient safety, data 

confidentiality, and reliability of operations in 

healthcare institutions. 
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6. ETHICS 

This work means no harm to mention UNTH 

as the data source. The data used does not in 

any way pose threat to the organization or 

patients. The name UNTH was used strictly 

for the purpose of this research. 
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