
International Journal of Real-Time Application and Computing Systems (IJORTACS) 
 

Corresponding Author Tel: +234 803 744 1427  270 
 

 

MODELING A DEEP LEARNING AND FUZZY LOGIC-BASED BEHAVIORAL 

APPROACH FOR AUTONOMOUS NAVIGATION OF A ROBOT IN A GLOBAL 

POSITIONING SYSTEM (GPS) DENIED ENVIRONMENT 

 
1Innocent Ifeanyichukwu Eneh, 2Princewill Chigozie Ene, 3Emmanuel C. Obasi 

1,2,3Enugu State University of Science and Technology (ESUT) 

1innocent.ifeanyichukwu@esut.edu.ng; 
2eneh.princewill@esut.edu.ng;3oechukwubueze@gmail.com 

1DOIs:https://orcid.org/0000-0001-6116-1607 

Abstract 

This paper presents the modeling of a deep learning and fuzzy logic behavioral approach for 

the autonomous navigation of a robot in a Global Positioning System (GPS) denied 

environment. The study was aimed at addressing the optimization problems experienced by 

mobile robots due to the dynamics of an environment as a result of global positioning system 

unavailability. This problem was addressed by collecting data from the workspace 

environment and then training a deep neural network model to generate a cognitive algorithm 

that was used for intelligent Simultaneous Localization and Mapping (SLAM) using the fuzzy 

logic approach. The algorithm was integrated into a deferential wheel drive robot using 

Simulink and was tested. The result showed an accuracy of 99.80% and a loss function of 

0.20%, which implied good training performance and SLAM intelligence. The deep fuzzy 

algorithm when integrated into the robot and tested in a dynamic environment that has no 

GPS was able to intelligently maneuver obstacles in the workspace.  

Keywords: Deep learning, GPS, Mobile Robot, Fuzzy, SLAM, dynamic environment. 

1. INTRODUCTION 

Mobile robots are becoming increasingly 

present in everyday life and this can be 

accredited to the fast development in 

microelectronics, communication, 

automation, navigation, and robotics they 

have rapidly changed the working 

environment in a way that mobile robots are 

a part of modern life (Oltean, 2019). The 

design of ground robots is a big research 

field and it presents very large industrial 

stakes as these robots are used increasingly 

in the industry as means of transport or for 

inspection (Melik and Slimane, 2016). 
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Studies show that navigation is a critical 

topic in the design and development of 

autonomous robots because a robot can run 

into impediments on a transitional path. A 

system is intelligent when it can assess a 

situation and use the knowledge it gathers to 

take wise judgments (in this case, avoiding 

obstacles and maintaining a smooth path 

toward a target). That is, for a robot to be 

able to sense its environment, process data 

gathered from it, identify an obstruction in 

front of it, interpret what is seen, and then 

make suitable decisions, it has to be 

intelligent. The technique by which a robot 

moves independently through a collection of 

coordinates of locations without running into 

other things or becoming lost is known as 

navigation. One way to implement this is 

through artificial intelligence(Klancar et al., 

2017).Artificial intelligence is the capacity 

of a robot to develop the ability to process 

information from its surroundings and make 

decisions from that through mimicking 

human intelligence. Algorithms that detect 

and avoid obstacles along a path would 

typically not be required if a robot's line of 

travel were designed geometrically, from its 

current location to its goal, and if there were 

strong assumptions of certainty that there 

would be no impediments along its path. 

The development of algorithms to help a 

robot recognize and avoid obstacles started 

in response to the reality that an autonomous 

robot may be in a situation where it has no 

prior knowledge of the challenges it may 

face (Wang et al., 2015). 

Robots can avoid objects that are not their 

intended targets by using strategies known 

as obstacle avoidance methodologies, which 

allow them to keep moving in the direction 

they were headed. It entails directing the 

robot's path to get around unforeseen 

obstructions. The robot is seen as an 

autonomous item and might be visualized 

moving through a potential field produced 

by the objective and by the environmental 

impediments. In other words, it might 

introduce the idea of a dipole, where the 

objective produces an attracted potential 

while other objects provide a repulsive 

potential. The past behaviour of robots close 

to barriers can be used to anticipate how a 

robot will act in the future when it 

approaches an impediment (and as a result, 

it is possible to compute the repulsive 

potential offline). A motion control strategy 

that establishes the robot's velocity vector to 

move it toward the goal while avoiding 

obstacles is also included in the potential 

field planning approach (Kozlowski and 

Pazderski, 2004). 

In this paper, interest in the autonomous 

navigation problem of a mobile robot is 

subjected to perform line following in a 

partially-known environment that is not GPS 

enabled. It is partially known because the 

environment may include unexpected static 

or dynamic obstacles. The environment is 

called a safe zone when no object is found in 

its path and a disaster zone when an obstacle 

is found in its path (Kozlowski and 

Pazderski, 2004). The safe zone constitutes a 

line drawn on the floor in a factory from 

origin to destination. When an obstacle is 

found on the line it becomes a disaster zone 

and the robot stops in front of it and sends 

an audible message rather than colliding 

with the object. Ordinarily, in the industry, 

on such lines, pedestrians or other objects 

are not to be found there. 
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1.2 Problem Statement 

In most autonomous system, cognitive 

intelligence of their environment is achieved 

when trained with the GPS coordinates of 

the environment, but in cases where these 

GPS data are not available, the robot gets 

stranded and are often affected by obstacles 

within the environment. The technical 

problem has resulted in other social and 

economic problems like the poor efficiency 

of mobile robots, limited application of the 

robot, etc; hence, this paper proposesa 

solution to this problem using deep learning 

and fuzzy logic techniques. 

2. LITERATURE REVIEW 

Eneh et al. (2019) presented the application 

ofdeep learning for autonomous navigation 

and SLAM operation of a holonomic robot. 

The study used a convolutional neural 

network to model a control system that 

allows the robot navigates smoothly within a 

dynamic environment. Despite the success, 

there is a need for cognitive learning in the 

robot.  

Hank and Haddad (2016) proposed a hybrid 

strategy that is specially designed to handle 

the autonomous-navigation issue of a mobile 

robot that is required to complete an 

emergency task in a poorly known area. 

Under the limits of the robot's capabilities 

and known and unknown obstacles, this 

navigation challenge necessitated a solution 

that can produce a quick execution time and 

is flexible enough to handle errors in the 

known sections of the environment 

(unexpected obstacles). The work 

incorporated an offline task-neutral pre-

processing stage that is only used once for a 

certain robot in a specific setting. Its goal 

was to create a roadmap of close-to-time-

optimal reference routes inside the specified 

zones. The task was carried out online using 

a combination of reactive navigation and 

trajectory tracking, with seamless changes 

between the two modes of navigation. 

Cheng et al., (2018) presented the 

Autonomous Navigation of Mobile Robots 

in Human Environments. Their study 

showed that service robots are -used in more 

and more indoor environments. They 

recognize the movements of humans in such 

an environment as dynamic obstacles and 

proposed ways that robots can overcome 

such obstacles. 

Melik and Slimane (2016) proposed a Fuzzy 

logic controller for the autonomous 

navigation of a mobile robot-type tricycle in 

a partially known environment. Two 

controllers are developed, the first for free 

navigation and the second for navigation 

with avoidance of obstacles present in the 

environment of a mobile robot using an 

obstacles detection module. The selected 

fuzzy controller for the various missions of 

the mobile robot was Takagi-SugenoType of 

Order Zero (TS0). 

Oltean (2019) presented a mobile robot 

platform with a fixed four-wheel 

arrangement chassis and an electronic 

system built around the Raspberry Pi and 

Arduino Uno Interfaces. The mobile 

platform satisfies some fundamental design 

criteria for initial development by being a 

low-cost option that is incredibly dependable 

and expandable.It is proposed for teaching 

(as a didactic stand for microcontrollers, 

electronics, automation, and robotics), as 
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well as for research projects to examine 

various mapping, localization, navigation, 

obstacle detection, and transport algorithms. 

The mobile robot platform could serve as a 

jumping-off point for further research, and 

some potential uses included autonomous 

guided robots for indoor environments, 

medical applications to help patients, 

military uses, packaging and organizing 

pallets in warehouses, and transportation of 

waste materials, laundry, food, and 

pharmaceuticals or other materials. 

3. METHODOLOGY  

The methodology used an artificial neural 

network and data collected from a dynamic 

environment based on three dimensions (3D) 

sensor perception to develop a model of 

thecognitive SLAM process and then 

integrate it into a mobile robot model for 

obstacle maneuvering in a dynamic 

environment. The data collected was utilized 

to train a neural network control system and 

then embedded on the mobile robot for SLA 

operationjumping-off using Robot operating 

system, Simulink, control system toolbox, 

and neural network toolbox. 

4. MODEL OF A DIFFERENTIAL 

DRIVE ROBOT 

The differential drive robot is a two-wheeled 

drive robot with independent actuators for 

each wheel. The motion vector of the robot 

is the sum of the independent wheel 

motions. In a differential drive robot, the 

motion of each wheel is controlled by one 

DC motor. The DC motor receives voltages 

as input and gives out torque as output. The 

torque produced on the axis of the robot 

causes the wheels of the robot to spin. The 

movement of the wheel will produce the 

pose of the robot. The pose of the robot is 

the orientation of the body frame concerning 

the world frame as seen in figure 1. To 

determine how the robot will move when it 

receives a sequence of commands (which is 

called forward kinematics) and what 

command is required for the robot to 

DC motor hasthe desired movement (inverse 

kinematics) the model of figure 1 is 

developed on the following assumptions 

(Kozlowski and Pazderski, 2004): 

i. The robot has two frames: The body 

frame (xr, yr) and the world Frame 

(xw, yw), and the body frame moves 

with respect to the world frame. 

ii. The robot is symmetrical along its 

longitudinal axis (xr). That is, it has 

equal distance wheels (axial length 

= 2L), the wheels are identical (Rl = 

Rr) and the centre of mass of the 

robot is at distance c from A as seen 

in Figure 1. 

iii. The robot is a rigid body. That is, 

the distance between any two points 

of the robot does not change. 

 

Figure 1: Differential drive robot 

(Kozlowski and Pazderski, 2004). 
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Rigid body rotation: ω=[0,0,θ′]T(.1) 

The velocity of point A in the body frame is 

given as   𝑉𝐴
𝑟= [

𝑉𝑢

𝑉𝑣  − 𝐶𝜃′
]   (.2) 

and(𝑉𝑣  − 𝐶𝜃′) is the lateral velocity at point 

A in the body frame. C is the centre of the 

mass of gravity. From the body frame, the 

velocity of the world frame can be obtained 

using a rotational matrix(Kozlowski and 

Pazderski, 2004). 

𝑉𝐴
𝑤=[

𝑥′

𝑦′
] =  𝑅𝜃𝑉𝐴

𝑟 =

[
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑉𝑢

𝑉𝑣  − 𝐶𝜃′
]  (3) 

The rotational matrix is defined by the 

orientation angle 𝜃. 

General kinematics equations (Kozlowski 

and Pazderski, 2004): 

𝑥𝑡
′ =  𝑉𝑢𝑡𝑐𝑜𝑠𝜃 − (𝑉𝑣𝑡 − 𝐶𝜃′)𝑠𝑖𝑛𝜃 (4) 

𝑦𝑡
′ =  𝑉𝑢𝑡𝑠𝑖𝑛𝜃 − (𝑉𝑣𝑡 − 𝐶𝜃′)𝑐𝑜𝑠𝜃 (5) 

𝜃𝑡
′ =  𝜔𝑡    (6) 

Further, it is assumed that the robot has no 

lateral movement, which means that the 

robot does not skid. This makes the lateral 

velocity in the body frame at point A to be 

zero. 

Hence, 𝑉𝐴
𝑟 =  𝑉𝑢  (7) 

And also, that each wheel travels a distance 

equal to its circumference for every full 

rotation means no slipping occurs during the 

movement of the wheels(Kozlowski and 

Pazderski, 2004):  

∆𝑥 = 2𝜋𝑅   (8) 

With these assumptions, at every instance 

the linear velocity of the wheel is given by 

the product of the radius of the wheel and 

the angular velocity(Kozlowski and 

Pazderski, 2004): 

𝑉𝑢𝑟 =  𝜔𝑢𝑟𝑅    (9) 

And equations (10) and (11) become: 

𝑥𝑡
′ =  𝑉𝑢𝑡𝑐𝑜𝑠𝜃  (10) 

𝑦𝑡
′ =  𝑉𝑢𝑡𝑠𝑖𝑛𝜃   (11) 

With the no-sliding assumption, the 

relationship between the robot and the world 

frame is simplified. The no-slipping 

assumption allows the relationship between 

the velocity of the wheel and that of the 

robot to be determined. 

Figure 2 shows the instantaneous centre of 

curvature (ICC). It is the only point on a 

rotation field that does not move. 

 

Figure 2 Instantaneous centre of curvature. 
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𝑑 = 𝐿 
𝑉𝑟+ 𝑉𝑙

𝑉𝑟− 𝑉𝑙
    (12) 

[

𝑉𝑙 =  𝜔(𝑑 − 𝐿)
𝑉𝐴 =      𝜔𝑑        
𝑉𝑟 =  𝜔(𝑑 + 𝐿)

]   (13) 

If 𝑉𝑙 =  𝑉𝑟  no turn. The robot moves in a 

straight line. If 𝑉𝑙 =  −𝑉𝑟 the robot will 

rotate on the spot. If 𝑉𝑙 =  0, (𝑉𝑟 = 0 ) the 

robot will turn on the wheel. The centre of 

curvature, in this case, lies on the position of 

the static wheel. 

Forward Kinematics: 

𝑉𝐴 =  
𝑉𝑟+𝑉𝑙

2
    (14) 

𝜔 =  
𝑅

2𝐿
 (∅′𝑟− ∅′𝑙)   (`15) 

[
𝑉𝐴

𝜔
] =  

𝑅

2
[
1 1
1

𝐿
−

1

𝐿

] [
∅′𝑟

∅′𝑙
] 

∅ is the angular velocity of the wheel, 𝜔 is 

the angular velocity of the robot.𝑉𝐴 is the 

linear velocity of the robot and  

𝑉𝑙  𝑎𝑛𝑑 𝑉𝑟 are linear velocities of wheels. 

Pose-to-wheel commands can now be 

mapped to obtain the forward kinematics of 

the differential drive robot. 

𝑞′𝑡 =  
𝑅

2
[

𝑐𝑜𝑠𝜃  0
𝑠𝑖𝑛𝜃   0
0        1

]

̇

[
1 1
1

𝐿
−

1

𝐿

] [
∅′𝑟

∅′𝑙
] (16) 

Inverse Kinematics  

[
∅′𝑟

∅′𝑙
] =  

1

𝑅
[
1 𝐿
1 −𝐿

] [
𝑉𝐴

𝜔
]  (17) 

 

4.1 Formulation of the SLAM problem   

Localization is the ability of a robot to know 

where it is on a map, and one way to do this 

is by using encoder sensors. Encoder sensors 

are used to compute the number of wheel 

rotations of the robot to determine the 

distance traveled. In this project, a Simulink 

model is used to carry out the localization of 

the robot. One of the ways to determine the 

position of a robot, in a GPS-denied 

environment, is to use the distance traveled 

by the robot. This method is called dead 

reckoning and it falls under the problem of 

knowing where the robot is located. 

An encoder is a device connected to the 

vehicle’s wheel to determine the number of 

wheel rotations. It has ticks, and the 

complete rotation of the ticks is 3600. The 

encoder is used to build an odometer-a 

device that is used to calculate distance 

traveled.  

Number of wheel rotation encoder 

=
total number of encoder ticks

total count per encoder
   (18) 

Distance traveled = Number of wheel 

rotations x circumference of wheel  (19) 

Distance = 
total number of encoder ticks

total count per encoder
 X circumference of wheel    

     (20) 

In equation (20), the input is the total 

number of encoder ticks, the output is 

distance and circumference and the total 

count per encoder are constants. With this, a 

Simulink model is developed with a simple 

algorithm. The parameter used is given in 

Table 1.  
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Table 1 Parameters used in distance 

travel model. 

Parameters Values 

Distance travel 3 m 

Robot wheel radius 0.052 m 

Ticks per rotation 627.6 

Axle length 0.27 m 

4.2. Data collection  

The sensor used in detecting obstacles in this 

paper is the Lidar and proximity. The lidar 

sensor was used for the environmental 

scanning in the size of 120 by 120, while the 

proximity sensor was used for the mapping 

of the position of objects along the line of 

sight.  

4. Pathfinding problems 

The designed path for this robot is a line. 

This is done on MATLAB with an app 

called simulation map generator. On this 

app, an image with a line on it is uploaded 

and then processed into a grey image.After 

the upload of the image is done, Image 

prepossessing is carried out with MATLAB. 

The pre-processing carried out is image 

sectioning in which the line on the image is 

made black and the environment is made 

white. In this way, the image now has only 

the line in black and the environment in 

white. Black areas seen on any other part of 

the environment are taken as noise, but as 

they are not so close to the path of the robot, 

they do not pose much of a problem to the 

robot. 

5. Basic Model of Neural Network 

To develop the neural network control 

system, the data collected from the sensor 

was used to train neural network architecture 

utilized by Schocken and Ariav (2019) as 

shown in figure 3 with the various 

components which are the weight wn, bias 

(vk), activation function θkis the tangent 

hyperbolic and sigmoid function and output 

yk; 

 

 

Figure 3: Architectural model of a basic neural network. 
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The deep learning model used for the 

development of the intelligent algorithm is 

the Convolutional Neural Network (CNN) 

adopted by Eneh et al. (2019). The CNN 

was reconfigured with three convolutional 

layers and a single fully connected layer. 

The workflow chart of the CNN was 

presented in figure 4; 

              

Figure 4: CNN Flowchart                                         Figure 5: Training flowchart of the CNN 

 

The CNN presented in figure 4 was made of 

four major layers which are the input layer, 

the convolutional layer, the fully connected 

layer, andthen the output layer. The input 

layer was used to dimension the image into 

the 120 by 120 and color channel of 3. The 

filter size used is 5 by 3 to perform 

convolutional scanning on the image and 

then the average pooling technique was used 

to extract the features maps from the strides 

to form the convolutional layer. The process 
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continues until the final convolutional layer, 

then the feature maps are flattened and fed 

to the fully connected layer for training with 

a feed-forward neural network to generate 

the obstacle classification algorithm.Figure 5 

presented the training of the CNN, showing 

how data was loaded into the CNN and then 

trained to generate the obstacle classification 

model.  

The fuzzy logic  

Having developed the CNN model which 

was used by the root for SLAM, the control 

to prevent collision with obstacle was 

achieved with fuzzy logic. Figure 6 

presented a basic fuzzy logic model with the 

fuzzifier at the input, inference engine, and 

rule-baseddefuzzifier. The fuzzy logic mode 

in figure 6 was reconfigured using the deep 

learning-based classification model 

developed as shown in figure 7; 

 

Figure 6: Basic fuzzy logic model 

 

Figure 7: Deep fuzzy model of the robotic 

control  

In the figure deep fuzzy model developed, 

the rulebase in the conventional fuzzy 

approach was improved using a deep 

learning-based classification model. Here 

the input from the sensor was fuzzified and 

trained at the inference engine, using the 

classification model to detect obstacles and 

then maneuver. The algorithm of the deep 

fuzzy model for the robotic control was 

presented as; 

Deep fuzzy algorithm 

1. Start  

2. Data collection from Lidar sensor (a) 

3. Set initial robot coordinates as (v) and 

(u) 

4. Data collection from proximity sensor 

% Set proximity coordinated as x and y 

axis  

5. Fuzzy set 

6. Deep learning classification model 

7. Training with inference engine  

8. If  

9. a is classified as = true 

10. Get new coordinates as (x; y) – (v ; u) 

as n  

11. Continue navigation at n+1 

12. Else  
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13. Continue navigation at x and y 

14. Return  

15. Stop  

 

6. SYSTEM IMPLEMENTATION 

The models and algorithms developed were 

implemented using a robot operating system, 

control system toolbox, image acquisition, 

optimization toolbox, deep learning toolbox, 

fuzzy toolbox, and Simulink. The Simulink 

model of the robot was presented in figure 8; 

 

Figure 8: Simulink model of the robot 

The model showed how the sensor which 

collects data from the environment needs a 

deep fuzzy algorithm for intelligent SLAM 

operation and then free navigation. The next 

section presented the simulation 

performance of the mobile robot developed 

with the intelligent control system. 

7. RESULT AND DISCUSSIONS 

The data used on the ANN are divided into 

three sets: training, validation, and testing. 

After every iteration step, the network is 

validated with the validation data and 

finally, when better performance is obtained 

by the network, it is then tested with the test 

data. In other words, the ANN is turned with 

the validation data, and when better 

performance is achieved, it is then tested 

with the test data. The purpose of having a 

set of validation and test data is to have an 

unbiased network. Figure 9represents the 

result obtained after training the deep 

learning algorithm considering the accuracy 

and loss function. 

Figure 10 also presented the result of the 

system integration which showed how the 

robot operated with the deep fuzzy 

algorithm to maneuver obstacles in a 

dynamic environment without GPS.
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Figure 9: The training result of the deep learning algorithm  

 

Figure 10: Integrated robot navigation with deep fuzzy controller  
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Figure 9 presented the training result of the 

deep learning algorithm, the result showed 

that the accuracy achieved is 99.80% and the 

loss function is 0.20%. The implication of 

the result showed that the robot correctly has 

knowledge of the objects within the 

propagation path and make avoid obstacle 

without GPS information of the 

environment.Figure10 is the robot wheel 

behavior with the deep fuzzy controller, 

showing how the robot navigates while 

collecting data from the environment and 

then train to make cognitive SLAM and 

avoid obstacles. The two colors in figure 11 

represent the behaviorof the two motor 

wheels controlled by the robot controllers in 

the two different cases. Showing how the 

robot turns its wheel with respect to signals 

received from the controllers based on the 

informed intelligence from the SLAM 

process. 

 

Figure 11: Behavior of Robot wheel with ANN controller 

 

8. CONCLUSION  

In this paper, the autonomous navigation of 

a robotis modeled with a differential drive 

robot in a GPS-denied environment. It 

involves navigation functions such as 

perception of the environment for obstacles 

with an ultrasonic sensor, and path tracking  

 

using the line following technique for 

localization. The robot SLAM operation was 

optimized using cognitive intelligence via 

training of a neural network control system. 

The result when tested showed that the root 

was able to correctly learn its environment 

via cognitive SLAM and then freely 

navigate to carry out a task.  
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9. CONTRIBUTION  

This research has developed a differential 

drive robot with cognitive SLAM 

intelligence using adeep fuzzy control 

system, for the intelligent maneuvering of 

obstacles within a dynamic workspace when 

GPS is denied. 
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