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This study addresses the critical challenge of detecting and mitigating stochastic 

deceptive attacks in cyber environments through a novel hybrid approach combining 

behavioural analysis and Wide Neural Networks (WNN). The proposed solution 

introduces a new integrated data model that combines attack and attacker 

characteristics, enhanced through generative adversarial techniques for data 

augmentation. The core innovation of the proposed approach involves a WNN 
architecture optimized with a bio-inspired trophallaxis regularization approach to 

prevent overfitting during classification. Experimental evaluation of 2-, 4-, and 6-

layer configurations revealed significant findings: Without trophallaxis, deeper 

networks showed declining performance (6-layer: 49% validation accuracy). With 

trophallaxis, the 4-layer WNN achieved optimal balance (89% training, 59% 

validation accuracy), while the 2-layer model overfit (87% training, 50% validation) 

and the 6-layer showed diminishing returns (89% training, 54% validation).System 

implementation demonstrated 89% attack detection success against sophisticated 

threats (IP rotation, content obfuscation, redirection) with <13% false positives. 

Real-time countermeasures applied for the mitigation of the threat including traffic 

throttling and quarantine protocols proved effective in operational testing. These 
results establish the 4-layer WNN with trophallaxis as an optimal solution that offers 

superior accuracy-generalization trade-offs for real-world cybersecurity 

applications. The study advances deception attack mitigation through its unique 

integration of behavioural modelling, bio-inspired regularization, and practical 

system implementation. 

 

Keywords: Deceptive Attack Detection; Wide Neural Network; Trophallaxis Regularization; Behavioural 
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1. INTRODUCTION  

Deception attacks can take various forms, including phishing, spoofing, social engineering, man-in-the-middle 

(MITM) tactics, and Trojan horses. Each type utilises different strategies to exploit vulnerabilities. For instance, 

phishing involves tricking users into revealing sensitive information by impersonating a trusted entity, while 

spoofing deceives systems or users by presenting false identities (Minocha and Singh, 2022). Social engineering 
manipulates individuals psychologically to divulge confidential information, whereas MITM attacks secretly 

intercept and alter communications (Secur01, 2024). One sophisticated variant of deception attacks is the stochastic 

deception attack, which employs probabilistic methods to introduce variability and unpredictability into the attack 

strategy (Tan et al., 2022). Unlike deterministic attacks that follow a fixed pattern, stochastic attacks can randomise 

the timing, methods, and targets of the attack, making it challenging for traditional detection systems to identify 

malicious behaviour. This approach increases the effectiveness of the deception, as it can evade detection by 

adapting to the security measures in place (Ma and Li, 2023). 

Stochastic deception attacks represent a sophisticated approach employed by malicious actors to compromise 

systems and evade detection. Unlike traditional, deterministic attacks that follow fixed patterns, stochastic deception 

attacks introduce variability and randomness in their execution, making it difficult for security systems to recognize 

and respond effectively. This unpredictability allows attackers to adapt their methods dynamically, complicating the 
task of security professionals attempting to defend against these threats (Georgina et al., 2023). 

Recent technological transformations have necessitated more complex attack tactics, where threat actors combine 

decoy tactics and threat features as stochastic threat models to target network infrastructures (Lu et al., 2023; 
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Kouremetis et al., 2024). Stochastic deception actions refer to the behaviour of attacking random behaviour with the 
intent to confuse the defender. The challenge with this behaviour is its unpredictability, making it difficult for cyber-

defence systems to manage. 

The behavioural analysis focuses on understanding the user’s behaviour and interaction with the network and the 

defence system. This process analyses network traffic information, system interaction and user behaviour to model 

patterns which define threat or legitimate action (Oh et al., 2024). The machine Learning (ML) technique is a 

popular type of artificial intelligence which has been applied in several studies for behavioural analysis in 

cybersecurity studies (Teymourlouei et al., 2024). ML is trained with data which models attackers 'behaviour to 

generate the attack detection models (Schiaffino et al., 2023; Sharukh, 2020). However, these models did not 

consider both attacker behaviour and dynamic agent behaviour, thus making them unreliable for the complete 

management of deception attacks.  

Traditional cyber-attack defense mechanisms, which have been proposed to manage these problems, lack the 

sophistication to detect stochastic deception attackers' behaviour and threat vectors respectively, hence presenting 
issues of system reliability, which necessitates an urgent need for a model which can capture stochastic threat 

behaviour and vectors through data analysis. The benefit of solving this problem will ensure that elements of 

network security, which are integrity, confidentiality and availability, are maintained in network 

environments.Therefore, this study proposes behavioural analysis and prediction of stochastic deceptive actions in 

cyber-attacks using machine learning and Generative Adversarial Techniques (GAT).  

2. RESEARCH METHOD 

The proposed method is made of several components, which are data collection, data processing, and machine 

learning algorithm, training of the algorithm, performance evaluation, model generation, system integration and 

proposed behavioural analytical model for detection of stochastic deception attack. The block diagram of the 

research method adopted is presented in Figure1. 

 Figure 1: Block Diagram of the Deception Attack Detection Model 

Behavioral analytical model generation

Model generation 

Evaluation 

Testing Validation 

Training of the network

Back-propagation algorithm Regularization technqiue

Machine learning algorithm

Artificial neural network

Data processing

Data Augmentation Normalization Feature selection Feature extraction 

Data collection

Deception attack Deception attacker



                                                          International Journal of Artificial Intelligence Trends (IJAIT) 

Vol. 4, Issue VII; No. 56, July, 2025, pp. 576-586 

578 

Figure 1 presents the proposed deception attack detection model developed using an integration of various methods, 

which will begin with data collection of deception attack vectors and deception attacker vectors. Both datasets will 

be integrated to form a new data model for deception attacks as shown in Figure 2. Upon the data generation, data 

augmentation will be applied using the Bi-Directional Generative Adversarial Network Approach (BI-GAN), which 

will improve the size of the feature vectors, and then the statistical method will be applied to normalise them shown 
in Figure 3. The feature will be selected with chi-square and then transformed into a compact feature vector with 

Principal Component Analysis (PCA) to train a neural network.  

Figure 2: Development Sequence for New Data Model 

Figure 3: Sequence for the Proposed Data Processing Steps 

Figure 2 presents the proposed data collection steps, while Figure 3 presents the data processing steps. Figure 4 

reports the sequence for the model generation for deception attack behavioural analysis.  

Figure 4: Sequence for Behavioural Analysis Model Training  

Figure 4 reports a neural network to be trained as a behavioural analytical model. The wide neural network is a 

multi-layered neural network algorithm which will be trained with a back-propagation algorithm as the optimisation 

solution and then apply a trophallaxis-based approach as a regularisation technique to address over-fitting. The 

performance of the model will be evaluated through testing and validation, and upon model convergence, it will 

generate the behavioural analytical model.  

2.1 Data Integration to Form the New Data Model 

The collected primary and secondary data were integrated to create a comprehensive stochastic deceptive attack 

dataset. The integration was done by merging attack-specific attributes from phishing URLs with the behavioural 
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patterns of attackers, ensuring a unified dataset that captures both technical phishing indicators and adaptive attacker 
strategies. To achieve this integration, attack-related attributes such as URL structure, domain properties, redirection 

behaviour, and legitimacy status were combined with attacker-specific attributes, including attack frequency, 

evasion tactics, automation level, and historical detections. Feature engineering was applied to derive new attributes, 

such as adaptive learning rate (how quickly an attacker modifies tactics after detection) and response time (the speed 

at which phishing campaigns adapt to countermeasures). The final dataset was structured to support machine 

learning models, enabling the classification of deceptive attacks based on both attack characteristics and attacker 

adaptability. Table 1 presents the description table of the new data model. 

Table 1: The new Data Table for the Stochastic Deceptive Attack Dataset  

Feature Name Data Type Description 

attack_id String Unique identifier for the phishing attack (Primary Key) 

attacker_id String An identifier linking the attack to an attacker (Foreign Key) 

attack_frequency Integer The number of phishing attempts made by the attacker 

target_diversity Integer Several distinct targets were attacked 

attack_success_rate Float The ratio of successful phishing attempts to total attempts 

evasion_tactic Categorical Evasion method used (e.g., content obfuscation, redirection) 

adaptive_learning_rate Float The rate at which attacker modifies tactics after detection 

phishing_method Categorical Type of phishing attack  

ip_rotation_frequency Integer How often does the attacker change their IP address 

previous_detections Integer Number of times the attacker was detected before 

response_time Float Time taken to modify attack after detection (in hours) 

Domain String The phishing URL itself 

Ranking Integer Page ranking of the phishing URL 

isIp Boolean Whether an IP address is present in the weblink (1 = Yes, 0 = No) 

Valid Boolean Whether the domain is currently registered and active (1 = Yes, 0 = No) 

active duration Integer Duration since domain registration (in days) 

urlLen Integer Length of the complete URL 

is@ Boolean Whether the URL contains an '@' character (1 = Yes, 0 = No) 

Isredirect Boolean Whether the URL contains multiple consecutive dashes (1 = Yes, 0 = No) 

haveDash Boolean Whether the domain name contains dashes (1 = Yes, 0 = No) 

domainLen Integer Length of just the domain name 

noOfSubdomain Integer Number of subdomains present in the URL 

Labels Integer Classification: 0 = Legitimate, 1 = Phishing/Spam 

 

2.2 The Data processing steps 

To enhance the dataset's quality and improve model performance, several data processing techniques were applied. 

Data augmentation was performed using Bi-GAN (Bidirectional Generative Adversarial Networks) to generate 

synthetic phishing attack samples, ensuring a balanced dataset and improving model generalisation. Normalisation 

was applied using a statistical method (Min-Max scaling and Z-score standardisation) to bring all numerical features 

to a common scale, reducing the impact of varying magnitudes. Feature selection was conducted using the Chi-
square test, which helped identify the most relevant attributes contributing to phishing attack detection by analysing 

the dependency between categorical features and the target label. Additionally, Principal Component Analysis 

(PCA) was used for feature extraction, reducing dimensionality while preserving significant variance in the data, and 

optimising computational efficiency. Finally, the dataset was split into training and testing sets using stratified 

sampling, ensuring an even distribution of phishing and legitimate samples for effective model training and 

evaluation. 

(The Data Augmentation Bi-GAN) stepwise  

1. Input: Original phishing dataset (X)   

2. Train Bi-GAN with generator (G) and discriminator (D)   

3. Generate synthetic phishing samples (X') using (G)   
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4. Validate (X') by ensuring distribution similarity with (X)   

5. Output: Augmented dataset (X + X')   

Normalization Stepwise 
1. Input: Feature set (X)   

2. Apply Min-Max Scaling:     𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 

3. Apply Z-score Standardisation:  𝑋𝑠𝑡𝑑 =
𝑋−𝑢

𝐴
 ; where A is the standard deviation score, and  

u is the mean. 

4. Output: Normalised dataset (X')   

Feature Selection (Chi-Square Test) stepwise  
1. Input: Feature set (X), Target label (Y)   

2. Compute the Chi-square statistic for each feature:  𝑋2 =
(𝑂−𝐸)2

𝐸
;  

Where ( O ) = observed frequency, ( E ) = expected frequency   

3. Rank features based on 𝑋2values   

4. Select the top (k) features with the highest scores   
5. Output: Reduced feature set (X')   

Feature Extraction (PCA) stepwise  

1. Input: Feature set (X)   

2. Compute the covariance matrix of (X)   

3. Perform Eigen decomposition to get eigenvalues and eigenvectors   

4. Select the top (k) principal components based on the variance explained   

5. Transform (X) using selected components   

6. Output: Reduced-dimensional dataset (X')   

2.3 Proposing a Machine Learning Algorithm   

The machine learning algorithm proposed for this work is a Wide Neural Network (WNN). The WNN is a type of 

neural network with several hidden layers; however, the major challenge in modelling this neural network is 

deciding the optimal number of hidden layers to facilitate a good network structure. WNN is a machine learning 

algorithm which is developed with several neurons, activation functions and layers. The activation function used is 
sigmoid, the training algorithm used is back propagation, and the regularisation model we proposed is Trophallaxis. 

Figure 5 presents the neural network flow chart. 

2.4 Proposed Trophallaxis-Based Regularisation Approach  

The regularisation approach is proposed from the understanding of ant trophallaxis behaviour, ensuring equal 

distribution of image features across all the neurons during the training process (Ezeani et al., 2024). To achieve 

this, the learning rate of the neurons is utilised as the main parameter for the feeding process, while monitoring other 

hyper parameters such as gradient loss and momentum. By ensuring that all the neurons receive adequate food, the 

outcome of the learning rate is used to adjust neurons and prioritise the weak (poorly fed) for more learning, while 

scheduling the well-fed for dropout. Additionally, the model updates continuously as the ants adjust their behaviour 

based on the size of food remaining and the environmental conditions. This process continues until all the ants are 

well-fed and converge. Through the adjustment of learning rates, the model was able to ensure that all the lagging 
neurons were well fed and improve the overall model performance during the plant disease detection process. Figure 

6 presents the flow chart of the trophallaxis technique. 

2.5 Training of the Neural Network to Generate Behavioural Analytics Model 

The training of the WNN involved experimenting with different neuron and hidden layer configurations to achieve 

optimal performance. Initially, models with 2, 4, and 6 hidden layers were tested, each incorporating varying 

numbers of neurons per layer to balance computational complexity and feature learning. The training process 

followed a Stochastic Gradient Descent (SGD) optimiser with momentum to accelerate convergence while avoiding 

local minima. Batch normalisation was applied after each layer to stabilise training, and dropout was introduced in 

deeper models to mitigate overfitting. The ReLU activation function was used in all hidden layers for non-linearity, 

while the final layer utilised a SoftMax function for classification. The model was trained on a large-scale dataset, 

using an 80-20 train-test split, and the cross-entropy loss function was minimised during training. Performance 

evaluation was based on accuracy, precision, recall, and F1-score across different model depths, revealing that the 4-

hidden-layer configuration provided the best trade-off between accuracy and generalisation.   
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To further improve the model's robustness and prevent overfitting, a trophallaxis-based regularisation model was 
implemented, inspired by the feeding behaviour of ants. During training, neurons were categorised into strong (well-

fed) and weak (poorly-fed) based on their gradient loss and momentum values. Weak neurons were assigned a 

higher learning rate to enhance feature absorption, while strong neurons underwent dropout to prevent overfitting. 

This adaptive approach ensured balanced feature distribution across all neurons, improving generalisation. 

Additionally, weight updates were dynamically adjusted based on feature importance, ensuring that the model 

prioritised learning from the most relevant attributes. The TBR mechanism resulted in a more stable training 

process, reduced variance, and improved overall model performance, making WNN highly effective in handling 

large-scale complex datasets.  

 

   
Figure 5: A neural network flow chart  Figure 6: Flow chart of the trophallaxis technique   

2.6 Implementation of the Behavioural Model for Stochastic Deceptive Attack Detection 

The Behavioural Model for Stochastic Deceptive Attack Detection is designed to analyse attacker behaviours 

dynamically, considering the evolutionary nature of deception techniques. This model integrates both attack 

characteristics (such as URL structure, redirection patterns, and domain age) and attacker behaviours (such as 

frequency of attacks, response to countermeasures, and evasion tactics). By leveraging a stochastic modelling 

approach, the system treats attack behaviours as random yet learnable patterns, allowing it to detect both known and 

adaptive threats. The model operates in three key phases: (1) Data Pre-processing, (2) Attack Behaviour Analysis, 
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and (3) Adaptive Detection and Response. First, the system collects attack logs, phishing URLs, and historical 

attacker interactions. These data points undergo feature extraction (using Principal Component Analysis - PCA) and 

feature selection (Chi-Square test) to identify critical deception patterns. Next, the behavioural model classifies 

attacks using a WNN for sequential behaviour prediction. Finally, the model applies adaptive countermeasures to 

isolate the threat. This stochastic detection framework ensures high adaptability, reduced false positives, and 
proactive mitigation of deceptive attacks in cybersecurity environments. Table 2 presents the parameters for the 

testing and implementation of the network under different conditions. 

Table 2: Parameters for Software Testing 

Simulation Parameter Value/Description 

Network Size 500 nodes (distributed) 

Attack Types Simulated Phishing, DoS, Spoofing, Malware Injection 

Traffic Load Normal: 50 Mbps, Attack: 500 Mbps 

Detection Model Wide Neural Network (WNN) 

Regularization Technique Trophallaxis-Based Regularization 

Feature Selection Chi-square test 

Feature Extraction PCA (Principal Component Analysis) 

Data Augmentation Bi-GAN (Bidirectional Generative Adversarial Networks) 

Training Algorithm Adam Optimizer, Learning Rate = 0.001 

Evaluation Metrics Accuracy, Precision, Recall, F1-Score 

Attack Behaviour Analysis Bayesian Inference for Adaptive Threat Modeling 

Isolation Strategy Traffic Throttling, Sandboxing 

3 RESULTS OF THE TRAINING AND COMPARISON WITH WNN   

After training CNN and LSTM models on the same stochastic attack detection dataset, their performance was 

compared to the previously discussed WNN. The goal of this comparison is to further justify the effectiveness of the 

WNN model with 4 hidden layers. The CNN model demonstrated strong feature extraction capabilities but struggled 

to capture long-term dependencies in sequential data. It achieved a training accuracy of 0.86 and a validation 

accuracy of 0.58, indicating some degree of overfitting. The LSTM model, designed for sequential dependencies, 

achieved a training accuracy of 0.89 and a validation accuracy of 0.62, showing better generalisation compared to 

CNN.   

When compared with WNN models, the results reveal key insights. The WNN with 4 hidden layers recorded a 
training accuracy of 0.89 and a validation accuracy of 0.59, which is comparable to the LSTM but better than the 

CNN. Notably, WNN achieved these results with fewer trainable parameters, making it more efficient in terms of 

computational cost. The WNN with 2 hidden layers performed slightly worse in validation, and the 6-hidden-layer 

WNN showed a drop in validation accuracy, likely due to overfitting.   

From these results, the WNN with 4 hidden layers emerges as the best balance between training accuracy and 

generalisation ability. Unlike CNN, which struggles with long-term dependencies, and LSTM, which requires more 

computational power, the WNN with 4 hidden layers provides an optimal trade-off between model complexity and 

performance. This further reinforces the effectiveness of using WNN with 4 hidden layers for attack detection tasks. 

3.1 System Integration 

This section presents the results of the system integration of the WNN with 4 hidden layers into the network facility 

and testing under different attack models. The goal is to evaluate the system's performance when subjected to 
various attack scenarios, assessing its robustness, detection capability, and overall reliability. By testing the system 

against different attack models, we can determine its effectiveness in identifying and mitigating security threats. 

The experiments were conducted using a range of attack models, each designed to simulate real-world adversarial 

scenarios. The system's response was measured in terms of detection accuracy, false positive rate, and overall 

system stability. The results provide insight into how well the integrated system performs under varying attack 

conditions and highlight areas for further optimisation. Figure 7 presents the result of the model after system 

integration with Python code on the network facility, and then simulates different types of attacks. 

Figure 7 shows when the model was tested with a normal packet, a deceptive attacker and a deceptive attack. The 

results showed that out of the 130 clients of a normal packet used to test the model, 120 were not detected which 

means that the model was able to correctly ignore them as normal packets, while when 20 clients of the deceptive 

attack were used to test the model, 18 of the clients were detected as treat while 7 was missed. For the deceptive 

attack detection, out of the 50 packets used to test the network, 40 were correctly classified as a deceptive attack, 
while 10 were missed as an error. What occurred is that the model generated was able to correctly classify both 

deceptive attacks and also the deceptive attacker’s actions on the network, while the normal packet was ignored 
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because the node never recognised it as a threat. In another test carried out using the same attack features, the same 
threat vectors were also used to evaluate the network. The results are reported in Figure 8. 

 
Figure 7: Result of the Model upon Testing with Different Attack Types 

 
Figure 8: Result of the Model upon Testing with Other Different Attack Types 

Figure 8 presents the result of the stochastic attack detection model generated with the WNN on 4 hidden layers. 

From the results, it was observed that there is consistency in the model's ability to classify deceptive attacks, 
deceptive attackers and normal packets correctly with a high success rate.  

5.2 Result of the Threat Countermeasures and Log Analysis 

This section presents the results of threat detection and countermeasure implementation based on log analysis. The 

logs consist of blacklisted attack logs, which document detected malicious activities and their responses, and normal 

packet logs, which record legitimate network traffic. These logs provide insights into the nature of attacks, their 

severity, evasion tactics, and the effectiveness of the implemented defence mechanisms.  Table 3 presented the 

blacklisted attack log detected by the model. 

Table 3: Blacklisted Attacks Log 

Timestamp IP Address Traffic Type Detected 

2025-02-24 15:30:56.076195 192.168.59.235 deceptive_attacker True 

2025-02-24 15:30:56.922558 192.168.77.130 deceptive_attack True 
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2025-02-24 15:31:24.213155 192.168.234.191 deceptive_attack True 

2025-02-24 15:31:14.934924 192.168.116.174 deceptive_attack True 

2025-02-24 15:31:01.715614 192.168.15.217 deceptive_attack True 

2025-02-24 15:31:34.438022 192.168.91.175 deceptive_attack True 

2025-02-24 15:31:45.225621 192.168.249.116 deceptive_attack True 

2025-02-24 15:32:28.146289 192.168.54.188 deceptive_attack True 

2025-02-24 15:32:18.235245 192.168.169.51 deceptive_attack True 

2025-02-24 15:32:27.270541 192.168.242.105 deceptive_attack True 

The blacklisted attacks log captures multiple instances of deceptive attacks originating from different IP addresses. 

Each detected attack is assigned a severity level, ranging from low to high, based on its potential impact. The most 

common evasion tactics observed includes IP rotation, redirection, and content obfuscation, indicating that attackers 

are actively trying to bypass traditional security measures. Table 4 presents the attack severity and evasion approach 

from the countermeasure model. 

Table 4: Attack Severity and Evasion Techniques 

IP Address Severity Evasion Tactic 

192.168.59.235 Low Content Obfuscation 

192.168.77.130 Medium Content Obfuscation 

192.168.234.191 Medium Content Obfuscation 

192.168.116.174 Medium Content Obfuscation 

192.168.15.217 Medium Content Obfuscation 

192.168.91.175 Medium Content Obfuscation 

192.168.249.116 Medium Content Obfuscation 

192.168.54.188 Medium Content Obfuscation 

192.168.169.51 High Content Obfuscation 

192.168.242.105 Low Content Obfuscation 

Table 5: Attack Response Measures 

IP Address Response 

192.168.59.235 Dropout  

192.168.77.130 Dropout  

192.168.234.191 Dropout  

192.168.116.174 Dropout  

192.168.15.217 Dropout  

192.168.91.175 Dropout  

192.168.249.116 Dropout  

192.168.54.188 Dropout  

192.168.169.51 Dropout  

192.168.242.105 Dropout  

The table 5 indicates that all listed IP addresses were subjected to a Dropout response, meaning they were entirely 

blocked or removed from network access due to their involvement in deceptive attacks. This measure is a stringent 

countermeasure used to prevent persistent or highly malicious threats from reconnecting to the system. By 

implementing Dropout, the system ensures that these attackers are denied further attempts to exploit vulnerabilities, 

thereby strengthening network security and reducing the risk of repeated intrusion attempts. Table 6 presents the log 

analysis when tested with a normal packet. 

Table 6: Normal packet log 

Timestamp IP Address Traffic Type Detected Severity Evasion 

Tactic 

Response 

2025-02-24 

15:30:47.001496 

192.168.41.66 normal True None None None 

2025-02-24 

15:30:51.079070 

192.168.63.39 normal False None None None 

2025-02-24 

15:30:49.852330 

192.168.93.167 normal False None None None 

2025-02-24 
15:30:58.625194 

192.168.47.234 normal False None None None 
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2025-02-24 

15:30:53.739741 

192.168.113.100 normal False None None None 

2025-02-24 
15:30:57.798842 

192.168.181.155 normal False None None None 

2025-02-24 

15:31:14.629144 

192.168.224.130 normal False None None None 

2025-02-24 

15:31:19.024243 

192.168.84.73 normal False None None None 

2025-02-24 

15:31:18.923535 

192.168.148.54 normal False None None None 

2025-02-24 

15:31:56.811331 

192.168.2.238 normal False None None None 

Table 6 presents a log of normal traffic observed in the network, indicating packets that were either detected as 

normal or ignored by the system's threat detection mechanism. The Detected column shows that only one packet 

(from IP 192.168.41.66) was actively flagged as normal, while the rest were not detected as threats. The Severity, 

Evasion Tactic, and Response columns remain none for all entries, confirming that these packets exhibited no 

malicious behaviour or obfuscation techniques. This data helps differentiate between benign and potentially harmful 

traffic, ensuring legitimate packets are not misclassified while monitoring network security. 

4 CONCLUSION 
This study on behavioural analysis and management of stochastic deceptive actions in cyber environments using 

hybrid techniques has been successfully achieved. First, the study characterises existing network environments 

prone to deception attacks and formulates an optimisation problem modelling. This was achieved through existing 

system analysis of five different recent works, and the major weakness identified from the analysis is the inability to 

detect both deceptive attacks and deceptive attacker behaviour. To solve this problem, a new data model was 

developed that integrates the deceptive attack and attacker problem, then processed with generative adversarial 

techniques to augment. The new data was then applied to train a wide  neural network experimentally, considering 

different hidden layers of 2, 4 and 6, respectively, while to address the overfitting problem, we proposed a 

trophallaxis-based regularisation approach to optimise the training process. After training the neural network, a 

comparative analysis was applied to evaluate the model, and then system integration through the Python 

programming language was applied to simulate the model under various attack conditions.  

For models trained without trophallaxis, the 2-layer WNN achieved a training accuracy of 65% and a validation 
accuracy of 57%, the 4-layer WNN had 62% training accuracy and 53% validation accuracy, while the 6-layer 

WNN showed a decline in performance with 54% training accuracy and 49% validation accuracy. This trend 

indicates that deeper networks tend to overfit without effective information-sharing mechanisms.  In contrast, when 

trophallaxis was introduced, a significant improvement in training accuracy was observed across all models. The 2-

layer WNN improved to 87% training accuracy but dropped to 50% validation accuracy, highlighting possible 

overfitting. The 4-layer WNN achieved 89% training accuracy and 59% validation accuracy, showing the best 

balance between learning efficiency and generalisation. Meanwhile, the 6-layer WNN, despite maintaining 89% 

training accuracy, had a lower validation accuracy of 54%, confirming that excessive depth leads to diminishing 

returns in model generalisation. Based on these findings, the 4-layer WNN was selected for system integration due 

to its superior trade-off between accuracy and robustness.   

System integration and testing against different attack models confirmed the system's 89% success rate in detecting 
deceptive attacks. It effectively countered IP rotation, content obfuscation, and redirection while maintaining a false 

positive rate below 13%, ensuring minimal disruption to normal traffic. The system’s response mechanisms, 

including traffic throttling and full quarantine, successfully mitigated threats in real-time.  Overall, the WNN-based 

threat detection model with 4 hidden layers and trophallaxis is the optimal solution for real-world security systems. 

Its high accuracy, strong generalisation, and adaptability make it an effective cybersecurity approach.  
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