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Abstract 

This paper focuses on improving the performance of the SCADA network in a 330/132kV transmission 
station by employing a phasor-based intelligent monitoring scheme. The study assesses the characteristics 

of the Alaoji SCADA system, which is designed with a Remote Telemetry Unit (RTU), and identifies 

challenges related to data synchronization and collection delays. To address these issues, the proposed 

methodology involves data collection from the Alaoji 330/33kV station, data processing using a three-
phase shunt active filter, Phasor Measurement Unit (PMU), artificial neural network training, and 

classification. The system design incorporates a structural approach to model the 330/132kV substation, 

phasor measurement unit, feed-forward neural network, and the Intelligent Load Flow Sampling 
Algorithm (LFSA). The implementation of the system is carried out using the Simulink platform, and its 

performance is evaluated using the tenfold cross-validation technique. The results demonstrate that the 

new LFSA achieves data collection and transmission within 14.3ms, a significant improvement compared 

to the characterized result of 540ms. The mean square error is reduced to 0.053288Mu, indicating high 
accuracy as it approaches zero, with an overall accuracy of 98.3%. Integration of the system at the Alaoji 

330/132kV transmission station enables high-quality and integrity data collection, thereby enhancing 
decision-making processes within the station. 

Keywords: Phasor Measurement Unit; Transmission; SCADA; Remote Telemetry Unit; Load flow 

sampling algorithm; Artificial Neural Network 

1. INTRODUCTION 

Power systems are classified into three main sections: generating stations, transmission, and distribution 

stations. These sections are interconnected and responsible for various activities involved in producing 

and delivering power to end-users for various applications. The generating station generates power from 

natural or other sources, and its capacity is increased using step-up transformers in substations. The power 

is then transmitted through the transmission systems to the grid. The distribution system brings down the 

transmitted power to a level compatible with the user's load for domestic and industrial applications. 

Currently, these three sections of the power system face numerous challenges, primarily due to the poor 

architectural state of the Nigerian power system network. According to Tsado et al. (2015), Nigeria's 

power sector is in a dire state, further complicated by transmission constraints and limitations. These 

issues include instabilities, system collapses, recurring blackouts, voltage sags, slow expansion of the 

transmission grid, poor transfer capability and capacity, as well as power capacity shortfalls and line 

outages.  
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Over time, the traditional approach to collecting data and studying the behavior of the power system has 

involved the use of remote monitoring through Supervisory Control and Data Acquisition (SCADA) 

systems. These SCADA systems collect data from power system equipment located in stations, remote 

areas, plants, or any other relevant location, via Remote Terminal Units (RTUs). The collected data is 

then transmitted to the control center for analysis and decision-making. Remote Terminal Units (RTUs) 

are microprocessor-based devices that are connected to sensors, transmitters, or process equipment for 

remote telemetry and control purposes. RTUs have various applications, including oil and gas remote 

instrumentation monitoring, networks of remote pump stations, power system monitoring, environmental 

monitoring systems, air traffic equipment, and more. However, a significant challenge with RTUs is time 

synchronization or precision timing. Precise timing is crucial for making accurate decisions and 

synchronizing data points in smart grid monitoring. Meeting the millisecond application requirements of 

the grid information system network for time synchronism and situational awareness is essential for 

operators to make reliable decisions both on and off the field. 

In the Nigerian power system, RTUs are currently mounted in on-grid locations due to their ruggedness 

and ability to withstand harsh atmospheric conditions for data collection and grid monitoring. However, 

there is a time difference of approximately 540ms (Bowen et al., 2005) between the RTU time and real-

time. This time delay significantly impacts the reliability of the collected data and decision-making. 

Therefore, there is a need for the development and utilization of a real-time data collection system for 

smart grid monitoring. To achieve real-time data acquisition in the SCADA system, this study proposes 

the use of Phasor Measurement Units (PMUs). PMUs are devices that were introduced in the early 1980s 

and have since become a mature technology with numerous applications currently under development 

worldwide. The occurrence of major blackouts in many power systems globally has led to increased 

interest in the large-scale implementation of Wide-Area Measurement Systems (WAMS) using PMUs and 

Phasor Data Concentrators (PDCs) in a hierarchical structure (Martinez et al., 2015). However, PMUs 

face challenges regarding reliability (poor accuracy) and sampling rate. This study proposes addressing 

these issues using artificial intelligence techniques and deploying the improved PMUs to enhance the 

ALAOJI 330KV transmission station. 

2. LITERATURE REVIEW 

Emmanuel et al. (2016) conducted a study on enhancing electric power transmission. The research 

focused on assessing the performance of the 330 and 132KV transmission network through descriptive 

analysis. They recommended the use of a real-time monitoring device for data acquisition and control 

purposes. Luo et al. (2018) investigated the fault location in transmission networks using sparse field 

measurements, simulation data, and genetic algorithms. Their research involved developing an algorithm 

that utilized sparse field and simulated data for real-time fault detection in transmission lines with the aid 

of genetic algorithms. Despite its success, this technique can be further improved by incorporating recent 

A.I. algorithms. Zhang et al. (2015) presented a study on enhancing real-time fault analysis and validating 

relay operation to prevent or mitigate cascading blackouts. The research involved collecting data on relay 

behavior in protection zones using Remote Telemetry Units (RTUs) and analyzing their behavior with the 

assistance of SCADA. However, the response time of the RTU was observed to have significant delays. 

Qurat et al. (2015) conducted a study on implementing SCADA for multiple telemetry units while 

utilizing GSM for communication. The research aimed to design a GSM-based SCADA system for 

remote monitoring and feedback, incorporating multiple telemetry units and GSM technology. However, 
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the telemetry device used in their study did not provide real-time data collection capabilities. Martinez 

(2015) presented a study on the phasor data requirements for real-time wide area monitoring, control, and 

protection applications. The study involved collecting real-time data from circuit breakers and relays 

using Phasor Measurement Units (PMUs) and analyzing it through SCADA. This technique is intended to 

be implemented at the ALAOJI power station. 

3. METHODOLOGY 

The methodology employed for the development of the new system is the Rapid application development 

methodology which accommodates the use of structural and mathematical method of modeling for the 

development of new systems in engineering. The method collected data of Alaoji transmission station and 

used to develop an artificial (feed forward) neural network algorithm. The algorithm was then used to 

improve the model of PMU to develop the proposed intelligent PMU system which was deployed for 

improved SCADA design. 

The Network Under Study 

The model of the alaoji 330/132kv SCADA network is hereby presented using structural method. The 

incoming from the Alaoji 330KV bus are step down to 132KV and then transmitted to the  Afam 1, Afam 

2, Owerrir 1, Owerri 2, Aba 1, Aba 2, Umuahia 1 and Umuahia 2 132/33KV transmission feeders 

respectively as shown in the figure 1; 

 

Figure 1: Single line diagram of the Alaoji 330/132KV substation (Source: Alaoji station) 

The SCADA system measurement set up at alaojistatation is monitoring Afam 1, Afam 2, Owerrir 1, 

Owerri 2, Aba 1, Aba 2, Umuahia 1 and Umuahia 2 132/33KV transmission feeders respectively. 
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The Phasor Measurement Unit System 

From the results of the related literatures, it was uncovered that the RTU suffers many limitations like 

delay response time and data synchronization time. The PMU was introduced to address this problem as 

shown in the model of figure 2; 

 

Figure 2: Model of the PMU 

In Figure 2, the Phasor Measurement Unit (PMU) is composed of several components that enable its 

functionality: 

1. GPS Receiver: The GPS receiver is a crucial component of the PMU. It receives signals from a 

global positioning system (GPS) consisting of 24 satellites operating synchronously in 6 orbits. 

These satellites provide precise location and time information in Universal Time Coordinate 

(UTC) format. By integrating the GPS receiver with the PMU, the collected data can be 

accurately time stamped, ensuring time synchronization for phasor-based systems. 

2. Analog to Digital Converter (ADC): The ADC is responsible for converting the analog signals, 

specifically the current and voltage signals from the substation transformer, into digital format. 

This conversion enables the subsequent processing and analysis of the phasor measurements. 

3. Filters: The PMU utilizes filters to process the sampled data obtained from the ADC. These filters 

operate based on the Nyquist-Shannon sampling theorem, ensuring that the sampled signals are 

processed using a sampling frequency that is at least twice the frequency of the original phasor 

signal. This process helps eliminate any aliasing or distortion in the data, ensuring accurate 

representation of the phasor quantities. 

4. Microprocessor: The microprocessor is the core processing unit of the PMU. It performs various 

computations and algorithms to analyze the phasor measurements and extract relevant 

information. The microprocessor plays a vital role in real-time data processing and generating 

synchronized phasor measurements. 
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5. Software Defined Radio (SDR): The SDR facilitates the transmission of data from the PMU to 

the designated receiving system. It enables wireless communication and ensures the reliable 

transfer of phasor measurement data. 

6. Phase Locked Oscillator (PLO): The PLO is responsible for locking the pulse signal obtained 

from the GPS. It utilizes a phase-locked loop and a sampling clock (typically 12 per cycle) based 

on the fundamental sampling frequency. This synchronization ensures accurate alignment and 

timing of the received signals, further enhancing the reliability of the PMU's phasor 

measurements. 

The integration of these components in the PMU system allows for precise phasor measurements and 

accurate synchronization of data, enabling real-time monitoring and analysis of power systems. The 

references provided (Chandragupta and Ramkumar, 2014) offer more detailed information on the 

operation and functionality of the PMU and its individual components. 

3.1 To Develop an Intelligent Control System  

From the model of the PMU, the control system was developed with proportional integral derivative 

(PID) controller. The limitation of the PMU with this PID is the poor quality of data been collected. This 

is because the load flow is accompanied with other noisy information like flickers, harmonics, etc. these 

attributes when collected with the bus data makes the quality ofdata lack integrity. This problem was 

addressed in this paper using an artificial neural network which was trained with the data required to be 

collect to generate a load flow control system which was incorporated with the PMU. 

4. THE ARTIFICIAL NEURAL NETWORK  

The Feed Forward Neural Network (FFNN) algorithm used in the research was adopted from Cletus and 

Eke (2022). The FFNN was developed with attributes such as interconnected neurons which have weight, 

bias, activation function and training algorithm. The model of the FFNN was presented in the figure 3; 

 

Figure 3: Architectural model of the FNN 

Where w is wko is the bias, wkp is the weight, vk is the summation of neuron, φ is the tansig activation 

function used, yk is the output. The number o the input was determined based on the bus data collected 

from the substation.  
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3.6.3 Training of the FFNN 

To train the FFNN, the data collected were loaded to the FFNN input neurons and then a back 

propagation training algorithm as presented in the Algorithm 1 was used to train the neurons. The training 
process adjusted the neurons weights to learn the features of the 132/33KV bus data for the 8 feeders 
connected to the Alaoji 330/132KV station.  

3.6.4 Back Propagation (Algorithm 1) 

1. Start 

2. Import Dataset 
3. Select feature variables from the dataset 

4. Initialize weights and bias functions with suitable thresholds 

5. Iterate over the dataset to update weights and biases 
6. Check epoch performance at regular intervals (e.g., every 10 steps) 

7. If training is satisfactory (performance meets desired criteria) 

8. Stop training 
9. Generate the reference phasor model based on the trained neural network 

10. Else, continue training until the desired epoch is reached 

11. Repeat steps 5 to 10 iteratively 

12. End 

The training of the FFNN was performed to learn the neurons of the features of the substations. Before 

the training began, the data collected were separated into the ratio of 80:10:10 or training, test and 

validation sets. The training data were used by the FNN to learn the features of the load flow. The test 

data was used to check its ability to collect correct data from the substations without noise while the 

validation data was used to validate the result of the training process based on five old cross validation 

technique. All these operations were performed using the neural network application software in Simulink 

2021a. After the training was completed the algorithm of the intelligent load flow sampling system was 

generated as algorithm 2. 

4.1 Neural network based PMU Load Flow Sampling System (ALGORITHM 2) 

1. Start 

2. Load data 

3. Split data into training, test, and validation sets 

4. Configure an intelligent PMU performance neural network 
5. Activate the training algorithm (back-propagation) 

6. Train the neural network using the training set 

7. Test the performance of the trained neural network using the test set 
8. Evaluate the performance of the neural network using suitable metrics (e.g., accuracy, precision, 

recall) 

9. Check if the validation performance meets the desired criteria 
10. If the validation performance is satisfactory, proceed to the next step 

11. Generate the intelligent PMU performance algorithm based on the trained neural network 

12. Else, go back to step 5 and continue training the neural network until the validation performance 

is satisfactory 
13. Apply the intelligent PMU performance algorithm in real-time operations 

14. Monitor and assess the performance of the PMU system using appropriate evaluation tools and 

techniques 
15. Continuously update and refine the intelligent PMU performance algorithm based on new data 

and system requirements 
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16. End 

4.2 Development of the Intelligent Phasor Monitoring and Control Scheme 

To develop the intelligent phasor monitoring and control scheme, the intelligent load flow sampling 

algorithm was incorporated with the PMU model as shown in the figure 4 to develop the intelligent 

phasor monitoring and control scheme. 

 
Figure 4: The intelligent phasor monitoring and control scheme 

The figure presented in Figure 4 represents the neuro PMU system developed using a neural network. In 

this system, the intelligent phasor monitoring and control scheme is implemented using the intelligent 

load flow sampling algorithm (ILFSA) in conjunction with the PMU model. 

The neuro PMU operates as follows: 

1. Data Collection: Data from the PMU filters is collected, which includes synchronized GPS 

information and other relevant measurements. 

2. Intelligent Load Flow Sampling Algorithm (ILFSA): The collected data is processed using the 

ILFSA, which has been trained with high-quality data from the substation. The ILFSA classifies 

the attributes of the data based on its training and classification capabilities. 

3. Attribute Classification: The trained ILFSA classifies the attributes of the collected data, 

extracting meaningful information related to power system dynamics, stability, and performance. 

4. Transmission to Control Center: The classified attributes are transmitted to the control center for 

further analysis and decision-making. This allows the control center to have accurate and valuable 

information for monitoring and controlling the power system. 

5. Quality Data Selection: The neuro PMU ensures that only high-quality data, which has been 

classified and verified by the ILFSA, is selected and transmitted for network analysis. This helps 

in improving the reliability and accuracy of the monitoring and control system. 
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By leveraging the neural network-based approach and the ILFSA, the neuro PMU system enhances the 

capabilities of traditional PMUs by providing intelligent attribute classification and selecting high-quality 

data for network analysis and control purposes. 

5. SYSTEM IMPLEMENTATION  

The system was implemented using neural network toolbox, power system toolbox and Simulink. The 

neural network toolbox was used to integrate the algorithm developed in figure 1 to the conventional 

PMU model to achieve the new system as shown in the developed model in figure 2. The Simulink 

implementation is presented in figure 5; 

Figure 5: the Simulink model of the intelligent PMU System 

The model in figure 5 presented the model of the new PMU developed in the study. The system 

implementation results of the PMU incorporated with the ILFSA developed with the neural network was 

presented. 

5.1 Performance evaluation  

Step response performance to measure the data sampling and delivery time in ms. 

c(t) =  Ctr(t) + Css(t)          1 

Where Ctr(t)the transient is time and Css(t)  is the steady state time. The model in equation 1 was used to 

measure the step response of the Alaoji SCADA station. To measure the system accuracy, the relationship 

between the True positive rate and specificity false positive rate was used as in equation 2 and 3; 

True  Positive Rate (TPR) =  
TP

TP+FN 
        2 

False positive Rate (FPR) =  
TN

TN+FP 
        3 

Where TP is true positive, FN is false negative, TN is true negative and FP is false positive. The accuracy 

of the classifiers was measured using the relationship between equation 2 and 3 as shown in the model of 

equation 4. 

Accuracy (ACC) =  
TP+TN

TP+TN+FP+FN
        4 

MSE = 
1

n
∑ (yi −  yǏ

n
i=1 )2         5 

Where n is number of data; yi is observed value, yǏ is predicted value 

6. RESULTS 

To discuss the result of the intelligent PMU developed, the performance of the algorithm used to improve 

the PMU model was examined using the performance evaluation models from equation 2 to equation 5. 

The first parameter considered to evaluate the performance of the PMU is the Mean Square Error (MSE) 
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performance in equation 5. The aim here is to check and determine the error rate achieved during the 

training process. The ideal MSE value for reference is zero, however any result approximately zero is 

very good and indicated good training performance. The MSE graph is presented in figure 6; 

 
Figure 6: MSE Analysis 

The result in figure 6 presented the MSE performance of the intelligent PMU used to improve, the result 

showed that the MSE value is 0.061673Mu at epoch 13 which is very good. The epoch is the parameter 

the neural network used to evaluate the performance at each training step and once the best MSE was 

achieved, the evaluate stops automatically implying that the algorithm have correctly learned the data. 

The next result presented the regression analysis of the new PMU system using receiver operator 

characteristics curve which employed TPR and FPR to evaluate the regression performance a system and 

then compute the overall score as presented in the figure 7; 

 
Figure 7: The ROC analysis 



INTERNATIONAL JOURNAL OF TRANSFORMATIVE ENGINEERING AND TECHNOLOGY 
 

Volume 2, Issue 5, No. 1; pp. 1-16  10 
 

The figure 7 presented the ROC performance of the intelligent PMU model developed as shown in figure 

1. The result was achieved using the model in equation 2 and 3 to formulate and compute the regression 

(R) score of the PMU which is a very vital parameter to check system reliability. The result in figure 7 

showed R value of 0.983 which is very good as it is very close to the ideal R value which is one. The 

implication of this result showed that the Intelligent PMU was able to correctly learn the load flow of the 

Alaoji substation and transmit accurately. To measure how accurate the data received are, the confusion 

matrix in figure 8 was used. 

 
Figure 8: The confusion matrix analyzer 

From the figure 8 the performance of the intelligent PMU was measured using the accuracy model in 

equation 4. The result showed that the accuracy achieved is 97.6% for correct classification of load flow 

to the software defined radio which transfers to the monitoring center. This overall accuracy was 

computed using the average of the test, training and validation accuracy as shown in the figure above to 

compute the overall PMU data sampling accuracy. The next result measured the step response 

performance of the intelligent PMU developed using the response time model in equation 1 and the  result 

is presented in figure 9; 

 

Figure 9: the step response of the intelligent PMU 
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The figure 9 presented the step response performance of the intelligent PMU system which was sued to 

evaluate the time of data delivery by the PMU. The delivery time is 14ms which according to (Kopetz, 

1997; Kuo and Lee, 2006) which specified that any time below 20ms is real time.  The delay however 

was not from the PMU as it collected data in exact real time, but due to the technical limitations of the 

software defined radio, the latency of 14ms was induced which is still acceptable. 

6.1 System Integration  

The neuro PMU system was subjected to system integration testing on the Alaoji 330/132KV 

transmission network as a case study. The testing involved monitoring the system using SCADA 

(Supervisory Control and Data Acquisition) and collecting relevant data for analysis. The test results 

obtained from the neuro PMU system on the Alaoji transmission network were documented and reported 

in Table 1. The table presents the collected data and corresponding measurements, providing insights into 

the performance and behavior of the power system. The integration testing of the neuro PMU system on 

the Alaoji transmission network, along with the results presented in Table 1, demonstrates the system's 

capability to monitor and analyze the network's dynamics, enabling efficient control and decision-making 

in real-time operations. 

Table 2: performance of the Improved SCADA  

Time 

(hr) Afam1 Afam 2 Owerri 1 Owerri 2 Umuahia 1 Umuahia 2 Aba 1 Aba 2 

1 0.987032 0.949304 0.987032 0.949304 0.987332 0.987032 0.961032 0.987032 

2 0.968026 0.986324 0.958026 1.000000 0.958026 0.958026 0.978026 0.958026 

3 0.988455 0.987268 0.998455 0.983033 0.998455 1.000000 0.988455 0.949304 

4 1.000000 0.978903 1.000000 0.986324 0.984424 0.982444 1.000000 0.995670 

5 0.786304 0.988672 0.949304 0.986324 0.746304 0.949304 0.949304 1.000000 

6 0.975670 0.987060 0.995670 0.995670 0.995670 0.995670 0.995670 0.983033 

7 1.000000 0.986324 1.000000 0.986375 0.983432 0.986324 1.000000 1.000000 

8 0.893033 0.681268 0.983033 0.843033 0.843033 0.987268 0.983033 0.991724 

9 1.000000 0.988903 0.949304 0.949304 0.949304 0.978903 1.000000 0.997640 

10 0.986324 0.986324 0.995670 0.995670 0.995670 0.988672 0.986324 0.986013 

11 0.987640 0.987268 1.000000 0.986324 0.965824 0.987060 0.963640 0.949304 

12 0.976013 0.978903 0.983033 0.983033 0.983033 0.986013 0.985413 0.995670 

13 0.949123 0.988672 0.986324 1.000000 0.949304 0.949304 0.985623 1.000000 

14 1.000000 0.987060 0.987268 0.986324 0.995670 0.986324 0.949304 0.983033 

15 1.000000 0.986324 0.978903 0.963640 1.000000 0.987268 0.995670 1.000000 

16 1.000000 0.987268 0.988672 0.985413 0.983033 0.978903 1.000000 0.986324 

17 0.791268 0.681268 0.681268 0.681268 0.681268 0.681268 0.983033 0.987268 

18 0.978903 0.988903 0.988903 0.986324 0.988903 0.988903 0.988903 0.978903 

19 0.989632 0.980632 0.980632 0.987268 0.980632 0.980632 0.980632 0.988672 

20 0.895060 0.891060 0.891060 0.978903 0.891060 0.891060 0.891060 0.987060 

21 1.000000 1.000000 1.000000 0.988672 1.000000 1.000000 1.000000 1.000000 

22 0.889970 0.699970 0.699970 0.699970 0.699970 0.699970 0.699970 0.699970 
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23 0.958903 0.988903 0.988903 0.988903 0.988903 0.988903 0.988903 0.988903 

24 0.987032 0.949304 0.987032 0.949304 0.987332 0.987032 0.961032 0.987032 

The table 2 presented the performance o the data collected from the Alaoji substation with the intelligent 

PMU developed with FFNN. The result showed the real data of the load flow collected without harmonics 

and noise for 24 hours. The implication of the result showed that when data was collected from the load 

flow, the load flow sampling algorithm was used to classify the output, thereby transmitting only quality 

data to the SCADA. 

Comparative SCADA Results with Neuro PLC and without Neuro PLC 

The comparative analysis presented in this study focuses on the performance of SCADA with 

LFSA (Load Flow Sampling Algorithm) and SCADA with RTU (Remote Terminal Unit). The 

evaluation compares the performance of the 132/33KV bus data collected from the Alaoji 

330/132KV transmission station control center using traditional SCADA with RTU and the new 

data collected using a neuro PMU-based SCADA system over a 24-hour period. The detailed 

tables used for the comparative analysis can be found in the Appendix. Table 3 specifically 

compares the Umuahia 1 and 2 buses, considering both the neuro PLC (Programmable Logic 

Controller) and traditional SCADA with RTU. The analysis reveals noticeable differences 

between the data collected with RTU and the data obtained with the neuro PMU. These 

discrepancies can be attributed to the presence of noise and harmonics in the RTU data. 

Additionally, the poor sampling and delay time of the RTU result in non-real-time data 

collection, compromising data integrity. Table 4 compares the data from SCADA with and 

without the neural network PMU for the Aba 1 and 2 132/33KV network. Similarly, Table 5 

examines the Owerri 1 and 2 buses, while Table 6 focuses on Afam 1 and 2. The results indicate 

variations in the voltage profiles of all the buses, with the neuro PMU providing more stable 

measurements compared to the SCADA system without the neuro PMU. This implies that the 

neuro PMU enables the collection of more up-to-date data for the Alaoji 132/33KV network, 

enhancing control stability analysis compared to using SCADA alone. Furthermore, a 

comparative step response was presented as in figure 10, which compared the response time of 

neuro PMU and then RTU. 

Figure 10: Comparative data monitoring performance  

From the comparative result presented in the figure 10, the graph showed the step response 

performance of the neural network based PMU and RTU. The result when used to sample the 

voltage magnitude at the bus shows that the settling time which is the total time taken for the 
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RTU to sample, process and send data to the control centre is 540ms and that of the PMU are 

14ms. The implication of the result showed that the ability of the PMU to sample data in real 

time and the intelligence of the neural network ensures fast data sampling and processing result. 
7. CONCLUSION  

This study has successfully developed an improved monitoring system for the Alaoji 330/132KV 

transmission station. The study was achieved using artificial neural network model trained with data 

collected from Alaoji 330KV substation and then used to improve the conventional PMU to achieve the 

proposed intelligent PMU system. The new system was deployed at the Alaoji SCADA for examination 

and the result presented a regression value of 0.984; MSE result of 0.053288Mu, accuracy of 98.3 and 

response time of 14.3ms is are all very good.  
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APPENDIX A (COMPARATIVE DATA ANALYSIS) 

Table 3: Comparative Data of the Umuahia 132/33KV bus 

Time (hr) Umuahia 1 with LFSA 
Umuahia 2 with 

LFSA 
Umuahia 1 with 

RTU 
Umuahia 2 with 

RTU 

1 0.987332 0.987032 0.981332 0.981032 

2 0.958026 0.958026 0.958026 0.958026 

3 0.998455 1.000000 0.998455 1.000000 

4 0.984424 0.982444 0.984424 0.982444 

5 0.746304 0.949304 0.747704 0.947704 

6 0.995670 0.995670 0.995670 0.995670 

7 0.983432 0.986324 0.983432 0.981724 

8 0.843033 0.987268 0.843033 0.981268 

9 0.949304 0.978903 0.947704 0.978903 

10 0.995670 0.988672 0.995670 0.988672 

11 0.965824 0.987060 0.945824 0.981060 

12 0.983033 0.986013 0.983033 0.986013 

13 0.949304 0.949304 0.947704 0.947704 

14 0.995670 0.986324 0.995670 0.981724 

15 1.000000 0.987268 1.000000 0.981268 

16 0.983033 0.978903 0.983033 0.978903 

17 0.681268 0.681268 0.681268 0.681268 

18 0.988903 0.988903 0.988903 0.988903 

19 0.980632 0.980632 0.980772 0.980772 

20 0.891060 0.891060 0.891060 0.891060 
21 1.000000 1.000000 1.000000 1.000000 

22 0.699970 0.699970 0.699970 0.699970 

23 0.988903 0.988903 0.988903 0.988903 

24 0.987332 0.987032 0.981332 0.981032 
Table 4: Comparative Data of the Aba 132/33KV bus 

Time (hr) Aba 1 with RTU Aba 2 with RTU Aba 1 with LFSA Aba 2with LFSA 

1 0.961032 0.981032 0.961032 0.987032 

2 0.978026 0.958026 0.978026 0.958026 

3 0.988455 0.947704 0.988455 0.949304 

4 1.000000 0.995670 1.000000 0.995670 

5 0.947704 1.000000 0.949304 1.000000 

6 0.995670 0.983033 0.995670 0.983033 

7 1.000000 1.000000 1.000000 1.000000 

8 0.983033 0.991724 0.983033 0.991724 

9 1.000000 0.997640 1.000000 0.997640 

10 0.981724 0.986013 0.986324 0.986013 

11 0.977640 0.947704 0.963640 0.949304 
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12 0.985413 0.995670 0.985413 0.995670 

13 0.985623 1.000000 0.985623 1.000000 

14 0.947704 0.983033 0.949304 0.983033 

15 0.995670 1.000000 0.995670 1.000000 

16 1.000000 0.981724 1.000000 0.986324 

17 0.983033 0.981268 0.983033 0.987268 

18 0.988903 0.978903 0.988903 0.978903 

19 0.980772 0.988672 0.980632 0.988672 

20 0.891060 0.981060 0.891060 0.987060 
21 1.000000 1.000000 1.000000 1.000000 

22 0.699970 0.699970 0.699970 0.699970 

23 0.988903 0.988903 0.988903 0.988903 

24 0.961032 0.981032 0.961032 0.987032 
Table 5: Comparative Data of the Owerri132/33KV bus 

Time (hr) 
Owerri 1 with 

RTU Owerri 2 with RTU 
Owerri 1 with 

LFSA 
Owerri 2 with 

LFSA 

1 0.981032 0.947704 0.987032 0.949304 

2 0.958026 1.000000 0.958026 1.000000 

3 0.998455 0.983033 0.998455 0.983033 

4 1.000000 0.981724 1.000000 0.986324 

5 0.947704 0.981724 0.949304 0.986324 

6 0.995670 0.995670 0.995670 0.995670 

7 1.000000 0.987775 1.000000 0.986375 

8 0.983033 0.843033 0.983033 0.843033 

9 0.947704 0.947704 0.949304 0.949304 

10 0.995670 0.995670 0.995670 0.995670 

11 1.000000 0.981724 1.000000 0.986324 

12 0.983033 0.983033 0.983033 0.983033 

13 0.981724 1.000000 0.986324 1.000000 

14 0.981268 0.981724 0.987268 0.986324 

15 0.978903 0.977640 0.978903 0.963640 

16 0.988672 0.985413 0.988672 0.985413 

17 0.681268 0.681268 0.681268 0.681268 

18 0.988903 0.981724 0.988903 0.986324 

19 0.980772 0.981268 0.980632 0.987268 

20 0.891060 0.978903 0.891060 0.978903 
21 1.000000 0.988672 1.000000 0.988672 

22 0.699970 0.699970 0.699970 0.699970 

23 0.988903 0.988903 0.988903 0.988903 

24 0.981032 0.947704 0.987032 0.949304 
Table 6: Comparative Data of the Afam 132/33KV bus 

Time (hr) Afam1 with LFSA Afam 2 with LFSA Afam1 with RTU Afam 2 with RTU 
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1 0.987032 0.949304 0.981032 0.947704 

2 0.968026 0.986324 0.968026 0.981724 

3 0.988455 0.987268 0.988455 0.981268 

4 1.000000 0.978903 1.000000 0.978903 

5 0.786304 0.988672 0.787704 0.988672 

6 0.975670 0.987060 0.975670 0.981060 

7 1.000000 0.986324 1.000000 0.981724 

8 0.893033 0.681268 0.893033 0.681268 

9 1.000000 0.988903 1.000000 0.988903 

10 0.986324 0.986324 0.981724 0.981724 

11 0.987640 0.987268 0.987640 0.981268 

12 0.976013 0.978903 0.976013 0.978903 

13 0.949123 0.988672 0.966123 0.988672 

14 1.000000 0.987060 1.000000 0.981060 

15 1.000000 0.986324 1.000000 0.981724 

16 1.000000 0.987268 1.000000 0.981268 

17 0.791268 0.681268 0.791268 0.681268 

18 0.978903 0.988903 0.978903 0.988903 

19 0.989632 0.980632 0.989772 0.980772 

20 0.895060 0.891060 0.895060 0.891060 
21 1.000000 1.000000 1.000000 1.000000 

22 0.889970 0.699970 0.889970 0.699970 

23 0.958903 0.988903 0.958903 0.988903 

24 0.987032 0.949304 0.981032 0.947704 
 
 


