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ABSTRACT 

This paper presents the application of machine learning technique and recursive polynomial 

estimator for improving the reliability of critical safety instrument system. The aim of the 

research is to improve the reliability of critical safety instrument system using machine learning 

technique and the main objective to develop a neuro logic solver and polynomial estimation 

model which monitoring the behaviour and distillation plant and control against system failure. 

To address this problem, literatures were reviewed, and a gap on the safety integrity was 

identified. This was done using methods such as risk assessment test, data collection, neurologic 

solver algorithm and error estimation algorithm and guided by the International Electrochemical 

Commission (IEC) 61508 and 61511 methodologies for the design and implementation of Safety 

Instrument System (SIS). The neurologic solver algorithm was developed using artificial neural 

network, tansig activation function and gradient descent back-propagation algorithm, while the 

error estimation algorithm was developed with recursive polynomial functions. These algorithms 

were implemented with Simulink, evaluated and cross validated considering Mean Square Error 

(MSE), regression, PFD, Risk Reduction Factor (RRF) and Safety Integrity Level (SIL). The 

result of the neurologic solver MSE is 2.98E-09, Regression is 0.9978 and PFD is 9.00E-04. 

When the neurologic solver was integrated on the testbed and evaluated, the PFD is 8.52E-04, 

thus presenting a SIL of 4 as against 1.14E-03 in the test bed with neurologic PLC solver and 

hence SIL of 3. The overall neurologic-based SIS PFD is 6.44E-03 and RRF of 155.279 as 

against 6.72E-02 with RRF of 14.881 which is characterized with PLC based logic solver, 

recording a 33.8% improvement in reliability. 

Keywords: Safety Instrument System; Recursive Polynomial Estimator; International 

Electrochemical Commission; Safety Integrity Level; Risk Reduction Factor; Probability 

of Failure on Demand; Machine Learning 

1. INTRODUCTION 

Accident in process plant is a regular occurrence, especially in high-risk process industries. 

These events keep occurring despite the strict adherence of the industries to the basic theories 

and standards of alarm management and process safety. The standard provides the various types 

of protection schemes necessary to reduce the level of risk to the lowest tolerable state. These 

standards build layers of protection which monitor and guard against nonlinear process incident 

during the manufacturing process. However, majority of hazards occur due to the failure of many 

of these organizations in the implementation of the best protection scheme, compatible with the 

level of risk their technical process offers. These as a result lead to various effects such as 

explosion, tanks overflow, chemical or gas leakages, loss of workers lives, industrial facilities, 

costing a lot among other socio economic and geographical impacts it has on the world. To 
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rectify these challenges, appropriate safety implementation needs to be adopted in these 

industries according to the safety standard of the Occupational Safety and Health Administration 

(OSHA)and International Electrochemical Commission (IEC) regulations (Rafal, 2016).  

One of the major sectors which practice the use of power plant is the oil and gas industry. This 

industry is responsible for the extraction of natural crude from mother earth and then fractionally 

distils the raw material at a very high temperature and pressure, to produce multiple products 

such as petrol, natural gas, kerosene, cooking gas, bitumen among other numerous bye products. 

The importance of crude oil in the global industrial and economic sector today cannot be 

overemphasized, which include the vital output it produces and the economic and foreign 

benefits it attracts. However, the technical process of producing these products involves 

dangerous risks due to the high pressure, concentration, temperature, among other variables 

involved in the fractional distillation process within a plant. 

In order to minimize these risks, process control systems are installed to maintain a safe 

operation of the plants. These systems are operated by trained control system engineers and 

assisted by robust alarms to intelligently detect fault and alert the operators for safety measures. 

Safety Instrument System (SIS) is an additional layer of protection scheme above the process 

design, process control and alarm layer in process industrial safety. According to David (2016), 

it’s a system which consists of basic technologies that are separate from the basic process control 

systems, to isolate them from the problem that they are intended to identify and prevent. The 

three basic elements of SIS are the sensors, logic solvers and the final control elements. An SIS 

is designed to mitigate industrial hazardous events such as explosion, fire, etc. by taking a 

process to a safe state when pre-determined conditions are violated. Other common terms used 

are safety interlock systems, Emergency Shutdown Systems (ESD), and Safety Shutdown 

Systems (SSS). Each SIS has one or more Safety Instrumented Functions (SIF). Every SIF 

within an SIS will have an SI level. These Safety Integrity Level (SIL) may be the same, or may 

differ, depending on the process (Dele, 2017). 

SIL is a measure of safety system performance, in terms of Probability of Failure on Demand 

(PFD). This convention was chosen based on the fact that it is easier to express the probability of 

failure rather than that of proper performance (e.g., 1 in 100,000 vs. 99,999 in 100,000). There 

are four discrete integrity levels associated with SIL; these are the SIL 1, SIL 2, SIL 3, and SIL 

4. The higher the SIL, the higher the associated safety level, and the lower probability that a 

system will fail to perform properly. As the SIL increases, typically the installation and 

maintenance costs and complexity of the system also increases. Specifically for the process 

industries, SIL 4 systems are so complex and costly that they are not economically beneficial to 

implement. Additionally, if a process includes so much risk that SIL 4 system is required to bring 

it to a safe state, then there is a fundamental problem in the process design that needs to be 

addressed by a process change or other non-instrumented method (Rafal, 2016). 
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The most used programmable logic solver in the manufacturing industries today is the 

Programmable Logic Controller (PLC). This is a digital device used for the automation of 

electromechanical processes which includes fractional distillation, mining, control of machinery 

on factories assembly lines among others. Unlike the traditional general-purpose computers, the 

PLC is designed to enable multiple input ports and output ports arrangements, resistance to 

noise, immunity to vibration, extended temperature ranges and also the capacity to control 

multiple devices over in a timely manner. This PLC is controlled based on programs and are 

battery powered and backed up with a non-volatile memory (Anup, 2015). 

The functionalities of the PLC have evolved overtime to add sequential distributed control 

system, relay control, process control and networking. The data handling, processing capacity, 

power, communication and storage capabilities of the modern-day PLC are of the same speed 

with the present minicomputer class. PLC today have been made more intelligent to adapt to 

varying industrial processes (Inyama and Agbaraji, 2015).Industries and organizations especially 

their health and safety departments would love to know in advance when the next injury or 

incident is going to happen to their personnel. Well, technology hasn’t gone that far yet, but it 

has certainly come to a point where it is able to predict this information with a certain accuracy 

rate. Specially trained Artificial Intelligence (AI) data models can look and deeply analyze a 

whole lot of historic data from various aspects and can predict the injury or incident rate with 

certain level of accuracy (Calvet and Arkun, 2018; Phillips and Habour, 1996). Safety measures 

taken by companies like creating awareness, providing training and calling regular safety 

meetings for their personnel makes a direct impact on the company’s incident rates. Therefore, 

by looking at these and other activities the Machine Learning/Artificial Intelligence (AI) models 

can learn and predict the possible incident rate at any given time. Frequent safety audits, audit 

recommendations and action items can only add to refine the quality of these incident rate 

predictions. Some Safety Management Systems have already started plugging in this module 

within their system and offering their clients to take full advantage of this machine learning 

process (Dash et al., 2001). 

Various studies such as (Rafal, 2016; Jasjeet and Matthew, 2016; Edgar and John, 2014; Dele, 

2017; Abhinav and Rajiv, 2018; Tan et al, 2015; Al-Muthairi and Zbiri, 2018; Ricardezet al. 

2018; Hori and Skogestad, 2018) presented different approaches for ensuring safety instrument 

system and improving on the safety integrity level of technical processes on an industrial 

scenario, meanwhile, the Probability of Failure on Demand (PFD)of this logic component 

remains a threat to the safety integrity of the SIS and has remained a gap to be addressed. To 

solve this problem, a machine learning based logic solver will be developed to improve control 

response and performance, while the integrity will be improved using mathematical estimation 

model to detect step ahead error of the plant and activate safety measures. 

2. METHODOLOGY 

The methodology adopted for the development of the new SIS was guided by the IEC 61508 and 

IEC61511 standards which required that the safety and reliability standard of each individual 
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component in the SIS is attained. The study begins with the risk analysis of the technical process 

with major focus on the probability of failure on demand of the SIS components to decide the 

safety integrity level. From the assessment, the critical safety component with potential for 

dangerous failure was identified and then a machine learning algorithm was used to develop a 

more reliable solution and implemented on the testbed with simulation. The safety integrity level 

was analyzed and compared with the characterized testbed for percentage improvement.  

2.1 Data Acquisition 

Having successfully performed the risk assessment test on the SIS, the data was collected 

considering the PFD of the system components, the detected and undetected common cause 

failures, diagnostic coverage for each component for a period of 39 days. The data are reported 

in the next chapter and analyzed considering the usage of safety integrity level and risk reduction 

factor according to the IEC standard. Another data of the fractional distillation plant was also 

collected from the case study containing attributes such as the temperature and pressure 

behaviour of the plants and was used later in the work for development of the machine learning 

based algorithm proposed. 

2.2 LOGIC SOLVER SYSTEM BASED ON MACHINE LEARNING 

In this section, machine learning based logic solver is developed using artificial neural network, 

activation function and training algorithm to reduce most of these technical problems attributed 

with the conventional PLC based logic solver and hence reduce failure probability to the 

minimum. The neural network model was developed using the interconnection of neurons, 

activation functions, training algorithms. The model presents how the neurons which have 

weights and bias was configured according to the input data class of the training set, the 

activation function and training algorithm to learn the distillation plant data collected and 

generate a neural network-based logic solver algorithm. The activation function used is the 

Tangent sign mode (tansig) activation function which enables the neurons to activate and also 

ensure data convergence between (-1 and 1). The training algorithm used in the study, is the 

Gradient descent back propagation type as it allows the neurons to learn, check its learning rate 

and feedback for adjustment and continuous learning until the least error is achieved. 

The data of the plant loaded into the neural network was used to configure the network and then 

train the neuron with the training algorithm to generate the neurologic solver algorithm. During 

the training, at each epoch the regression and training error was checked until least error is 

achieved and then the neuro logic solver algorithm developed as shown in the pseudocode 

below; 

2.3 The Logic Solver Algorithm 

1) Start  

2) Load plant data 

3) Configure neural network with table 1 

4) Initialize training algorithm 

5) Train neural network  

6) Check for training failure  

7) If  



International Journal of Explorative Computing Systems 
Volume 3, Issue 7, No.13, July 2024, pp. 146-160 

148 

 

International Journal of Explorative Computing Systems | Tel: +234 803 323 7369 
 

148 

8) Failure probability ≈ 0  

9) Generate logic solver algorithm 

10) Else  

11) Back-propagation 

12) Adjust neuron  

13) Repeat step (5; 6; 7 and 8) 

14) Generate logic solver algorithm 

15) Else  

16) Do (step 13) until step 8 is true 

17) Generate neurologic solver algorithm 

18) Generate the neurologic solver block 

19) End if 

20) End if 

21) End   

Table 1: The training parameters  

Training Parameter Assumed Value 

Learning Rate 0.001 

Number of Epochs 100 

Batch Size 32 

Activation Function ReLU 

Loss Function Mean Squared Error (MSE) 

Optimizer Adam 

Regularization Techniques L2 Regularization (weight decay) 

 

The training parameters in Table 1 present the neural network properties which values for input 

layer and hidden layers were inspired by the plant attributes (class in the training set collected), 

other values were standard neural network properties auto input by the neural network tool used 

for training. The flow chart of the SIS developed with the neurologic solver is presented below. 

2.4 Safety Integrity Algorithm for the Neuro SIS 

The previous section developed a neurologic based SIS system to monitor the distillation plant 

overflow and maintain stability, however despite the high-level intelligence of the logic solver as 

it has been trained with the plant data, there is still probability of failure due to common cause 

problems. To address this, a recursive polynomial estimation model was developed which 

identifies common cause problems for individual component error ahead of time and control. 

The model of the recursive polynomial estimation was developed from the general linear 

dynamic model of the SIS behaviour as an Auto Regressive Moving Average (ARMAX) (Petr, 

2014) in equation 1; 

𝑦(𝑘) =  
𝐵(𝑞−1)

𝐴(𝑞−1)𝑃 (𝑞−1)
𝑢(𝑘) +  

𝐶(𝑞−1)

𝐴(𝑞−1)𝐷(𝑞−1)
𝑛(𝑘)      1 

Where y(k) is the output signal, u(k) is input signal, n(k) is noise with constant variance, A, B, C, 

D,and P are all shift transfer operators polynomial as shown in the transfer functions below; 

𝐴(𝑞−1) =  1 + 𝑎1𝑞−1 +  … … … . . +𝑎𝑛𝑎𝑞−𝑛𝑎 



International Journal of Explorative Computing Systems 
Volume 3, Issue 7, No.13, July 2024, pp. 146-160 

149 

 

International Journal of Explorative Computing Systems | Tel: +234 803 323 7369 
 

149 

𝐵(𝑞−1) =  𝑏1𝑞−1  + 𝑏2𝑞−2  + ………….+ 𝑏𝑛𝑏𝑞−𝑛𝑏 

𝐶(𝑞−1) =  1 + c1𝑞−1 +  … … … . . +𝑐𝑛𝑐𝑞−𝑛𝑐 

𝐷(𝑞−1) =  1 + 𝑑1𝑞−1 +  … … … . . +𝑑𝑛𝑑𝑞−𝑛𝑑 

𝑃(𝑞−1) =  1 + 𝑝1𝑞−1 + … … … . . +𝑑𝑛𝑝𝑞−𝑛𝑝 

The ARMAX in equation 1 presented the polynomial regression of the SIS, while the 

corresponding predictor is presented as(Chan and Zhang, 2011); 

y̆(tk|p) =  ɸT (tk. p)p̌(tk−1)        2 

Where ɸ
T(tk)the repressor, p is the parameter vector and are defined as; 

ɸ
T(tk) = [−y(tk−1) … ….    - y(tk−na

) u(tk) … … . … … . u(tk−nb
).T 

p = [a1…………anabo ……………………bnb]T  

The model in equation 2 was rewritten as a general recursive algorithm in equation 3(Cao and 

Schwartz, 1999; Chan and Zhang, 2011) which is the estimated step ahead prediction model of 

the SIS error; 

p̌(tk) =  p̌(tk−1) +  u(tk)L(tk)ε (tk)       3 

WhereL(tk) is the adaptation gain, u(tk) is the scalar,p̌(tk) is the estimated time varying vector 

parameter, ε (tk) the predictor error and given as equation 4 with y̌(tk|p) defined (2) 

ε (tk)  = y(tk) − p̌(tk|p)         4 

The Recursive Polynomial Predictor algorithm  

1. Start  

2. Identify the SIS as ARMAX in equation 1 

3. Define the shift transfer polynomials (A, B, C, D, P) and noise function n(k)  

4. Get the equivalent SIS predictor model with equation 2 

5. Transform to recursive form with equation 3 

6. Identify the estimated time varying vector p̌(tk) 

7. Identify the predictor error ε (tk) 

8. Return  

9. Stop 

The algorithm of the polynomial model developed for the optimization of the SIS integrity level 

operates as follows. First, the SIS model was identified as an autoregressive moving average 

function using the model in equation 1 with the polynomial equivalent shift operators, noise and 

input functions. The predictor of the ARMAX in equation 1 is presented as equation 2 which was 

used to estimate the next behaviour of the SIS and identifying any error in the components using 

the recursive form in equation 3 with the error estimated defined as equation 3.  

Figure 1 present the complete system flowchart which shows the neuro-based SIS and the 

polynomial estimation model was used to monitor the technical process for tank overflow. When 

the process control fails, then sensors send the signal to the neurologic solver which then 

activates the control valve for stability of the reactor. However, when the controller suffers 

common cause problem the estimation algorithm detects it and then control the plant to prevent 

failures. Figure 2 present the architectural model of the new SIS and the mathematical estimation 
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model used for the error monitoring. The sensors collect data of the plant and send to the neuro 

logic solver for control process. The mathematical model was also used to monitor the SIS for 

common cause problem which can lead to system failure and prevent it. This was achieved 

identifying the SIS as ARMAX and then transform it into a recursive polynomial estimation 

model to detect error and also predict the system behaviour as in equation 3. 

 

 

 
Figure 1: The complete system flowchart 
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Figure 2: Architectural model of the new SIS 

3. SYSTEM IMPLEMENTATION 

The neuro-based SIS was developed using the models of the testbed which showed the 

distillation plant, the sensors, the logic solvers and the final control elements. The study focused 

on the logic solver with many limitations and probability of failure due to common cause 

problems. Model of the new SIS was developed using artificial neural network and the 

mathematical transfer function 

During the training process the recursive polynomial estimation function was used to check the 

system integrity via identification of the SIS as ARMAX in equation 1 and then used the 

recursive model in equation 3 to identify possible problem for control measures. The transfer 

function of the recursive polynomial estimation model is presented in figure 3; 

 
Figure 3: Transfer function model of the recursive polynomial estimator  
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The figure 3 present the recursive polynomial mathematical transfer function which identify the 

SIS as an ARMAX, then regression was used to get the predictor and then apply recursive 

polynomial model in the equation 3 used for the detection of SIS error and estimation.  

These models were all implemented using neural network toolbox, system identification toolbox, 

optimization toolbox and Simulink. The neural network tool was loaded with the plant data and 

then trained for the generation of the neurologic solver algorithm. The optimization toolbox was 

used to implement the recursive polynomial algorithm developed, which identified the plant 

behaviour using the system identification toolbox as ARMAX for monitoring and control 

measures. The Simulink block of the neuro-based SIS is shown in figure 4; 

 
Figure 4: The Simulink model of the Neuro based SIS system 

The Simulink implementation of the system was presented in the figure 4, showing how the 

recursive polynomial estimation model developed was used to improve the safety integrity level 

of the SIS via monitoring and detection of errors. The neural network was trained as the safety 

integrity logic solver to monitor the behaviour of the distillation plant, while the polynomial was 

used to monitor various errors through the time varying Auto Regressive Moving Average 

(ARMAX) which can occur within process design and the notify through the revert signal 

scaling scope. While the neural network collects plant data from the process design, the 

compares with the neural network reference model to control the plant. The simulation of the 

model was done using the parameters inspired from the test bed as shown in table 2; 

Table 2: Simulation parameters  

Parameters  Values  

Simulation time  800Hrs 

Time interval   200Hr 

Step change  0.5 to 2 (kgmol/m3) 

Noise power  0.0075(k2) 
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White noise power 0.015 

Signal to noise ratio 10 

Deviation of noise level 2% 

 

Table 2 presents the simulation parameters inspired from the case study characterized. The 

parameters were used to simulate the testbed under the same condition it was characterized, but 

with the neurologic based SIS developed.   

4. RESULTS AND DISCUSSION 

From the risk assessment test conducted, it was uncovered that the PLC based logic solver has 

potential for dangerous failure as it is one of the most vital components of the SIS. This study 

developed neural network-based logic solver as shown in the figure 3.9 and used to improve the 

integrity of the SIS. 

The performance of the neurologic solver was evaluated using regression and Mean Square Error 

(MSE) model as appeared in (Inyama and Azubuike, 2015). The MSE performance was 

presented in figure 5; 

 
Figure 5: The MSE of the neurologic solver 

The analysis of the results depicted in Figure 5 provided valuable insights into the accuracy and 

effectiveness of the neural network training and testing process. The primary objective of this 

assessment was to minimize the error associated with the neurologic solver algorithm. 

Remarkably, the achieved Mean Squared Error (MSE) of 2.7494E-09 indicated a level of error 

that can be considered practically negligible. This exceptional performance demonstrated the 

capability of the neurologic solver algorithm to generate highly precise and reliable outcomes. 
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Furthermore, the subsequent evaluation focused on assessing the regression performance of the 

neurologic solver. This analysis aimed to determine the solver's ability to accurately detect and 

interpret signals from sensors, enabling it to make precise control decisions. Figure 6 visually 

presents the performance of the neurologic solver in this regard. 

The regression analysis involved comparing the predicted values generated by the neurologic 

solver with the actual sensor signals. By measuring the degree of correlation between the 

predicted and actual values, the regression performance of the neurologic solver was assessed. A 

high degree of correlation would indicate that the solver effectively captured and interpreted the 

sensor signals, leading to accurate control decisions. 

The results obtained from this evaluation provided crucial insights into the efficacy of the 

neurologic solver in detecting sensor signals and making precise control decisions. The close 

alignment between the predicted values and the actual sensor signals depicted in Figure 6 

demonstrated the solver's ability to effectively analyze and interpret the data. This robust 

regression performance further substantiated the reliability and accuracy of the neurologic solver 

algorithm in the context of the SIS application. 

Overall, the combination of minimal error indicated by the MSE analysis and the strong 

regression performance showcased in Figure 6 reinforced the effectiveness of the neurologic 

solver algorithm. These results contribute to the overall confidence in the neurologic solver's 

ability to accurately process sensor signals and enable precise control decisions, thus enhancing 

the reliability and performance of the system. 

 
Figure 6: The Regression results 
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Figure 6 presents the regression performance of the neurologic solver. The aim here is to achieve 

a regression approximately or equal to one. The result here showed that the regression for the 

neurologic solver is 1, which implied reliability in controlling the tank overflow when error 

occurs in the process control section. To measure the failure rate of the neurologic solver, the 

neurologic solver was tested at operating time of 500hrs and the result presented in figure 7; 

 
Figure 7: The neurologic solver PFD 

Figure 7 presents the PFD of the neurologic solver using the PFD model(Stein et al., 2010) to 

identify the failure of the neurologic solver over 500 hours of operation time. From the result, the 

PFD is 9.14E-04. This PDF shows that the neurologic solver has a SIL of 4 when referred to the 

IEC standard. 

5. Results of Neuro SIS with the Recursive Polynomial Estimator  

This section presents the performance of the neuro SIS with the recursive polynomial estimation 

algorithm developed for the estimation of error in the system performance. The result showed the 

error identification of the SIS as ARMAX according to the equation 1 with the equivalent 

polynomial regression (which contained the white noise as the simulated error) as in figure 8 
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Figure 8: The SIS error identification result  

Figure 8 provides a visual representation of the system identification results obtained from the 

polynomial estimation model. The purpose of this model is to accurately determine and 

understand the behaviors exhibited by the Safety Instrument System (SIS) plant. By employing a 

polynomial regression transformation, the model can effectively capture and represent the 

underlying patterns and dynamics of the SIS plant. 

The process of system identification involves analyzing the input-output relationship of the SIS 

plant and extracting relevant information from the collected data. The polynomial regression 

transformation, as defined in equation 2, serves as a mathematical framework for mapping the 

input signals to the corresponding output responses. This transformation enables the model to 

capture the complex relationships and non-linearity inherent in the SIS plant's behaviour. 

Figure 10 showcases the application of the recursive polynomial function in predicting the step 

ahead error of the signal. This function plays a crucial role in estimating the error that may occur 

in future time steps. By leveraging historical data and the identified polynomial model, the 

recursive polynomial function can forecast the potential deviations or discrepancies between the 

expected and actual signal values. 

The ability to predict the step ahead error is of great significance in ensuring the robustness and 

reliability of the SIS. It enables proactive measures to be taken in response to potential errors or 

anomalies, thereby preventing system failures or hazards. By continuously monitoring and 

analysing the predicted errors, appropriate corrective actions can be implemented in a timely 

manner to maintain the optimal performance of the SIS. 

Overall, the utilization of the polynomial estimation model and the recursive polynomial 

function facilitates a comprehensive understanding of the SIS plant's behaviours and enhances 

the system's ability to identify and address potential errors. This contributes to the overall 

reliability, safety, and effectiveness of the SIS in critical operational environments. The figure 9 

presents the step ahead error prediction. 



International Journal of Explorative Computing Systems 
Volume 3, Issue 7, No.13, July 2024, pp. 146-160 

157 

 

International Journal of Explorative Computing Systems | Tel: +234 803 323 7369 
 

157 

Figure 9: The Step ahead Estimated Error  

Figure 9 present the step ahead error predictor of the SIS. From the model, the error in the SIS 

was estimated with equation 4 while the controlled output to stabilize the plant is presented in 

figure 10;  

 
Figure 10: The Control output 

Figure 10 provides a graphical representation of the control output of the plant, highlighting the 

significant impact of identifying and estimating errors ahead of time. By utilizing the neurologic 

solver algorithm and the error estimation techniques, the system was able to proactively identify 

and address potential errors, thereby minimizing the probability of system failure. 

The integration of the neurologic solver algorithm allowed for the timely detection and 

estimation of errors in the system. This enabled proactive measures to be taken to mitigate the 

identified errors and ensure smooth and reliable system operation. As a result, the control output 

of the plant depicted in Figure 10 demonstrates a notable reduction in potential failures and an 
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overall increase in the safety integrity level of the system. The ability to identify and estimate 

errors ahead of time provides a crucial advantage in terms of system reliability and safety. By 

addressing potential issues before they can escalate, the likelihood of system failure is 

significantly reduced, thereby enhancing the overall performance and integrity of the system. 

The findings presented in Figure 10 highlight the positive outcomes achieved through the 

implementation of the neurologic solver algorithm and the error estimation techniques. By 

effectively managing errors and optimizing the control output of the plant, the system's reliability 

is greatly enhanced, and the safety integrity level is elevated. Overall, the utilization of these 

advanced techniques enables the system to operate with greater efficiency and resilience. The 

reduction in the probability of system failure demonstrated in Figure 10 reflects the successful 

implementation of proactive measures, ultimately leading to improved safety, increased 

reliability, and enhanced overall system performance. 

6. CONCLUSION AND RECOMMENDATIONS 

Safety integrity level of SIS cannot be zero due to the probability of failure on every engineering 

component or system. However, there are acceptable tolerance standard recommended which 

will guarantee optimal safety, but the available system used in the process design, control and 

SIS designs in our oil and gas industries today, despite the high risk involved in the technical 

process cannot reduce the risk to the tolerance level of 4 or 3 as the risk reduction factor. This 

has remained a major challenge and a problem waiting to be addressed as many lives and 

equipment are at risk when this system eventually fails; not mentioning the level of 

environmental hazard it will cause. There is need for SIS which will reduce this risk to the 

acceptable limit and ensure safety of lives and equipment. The benefit of solving this problem is 

an improved confidence of staff during technical process and ensuring that the system functions 

at optimal level during the fractional distillation and other processes. This paper successfully 

enhances the reliability of critical safety instrument systems through the integration of 

mathematical methods and machine learning techniques. The machine learning algorithm utilizes 

neural networks to develop a crucial component of the safety instrument system, known as the 

logic solver. On the other hand, a mathematical method involving a recursive polynomial 

estimation algorithm is employed to construct a reliability assessment model for error estimation 

in the safety instrument system and the implementation of control measures. 

To evaluate the performance of the developed algorithms, they are implemented using Simulink 

and assessed using various metrics such as Mean Squared Error (MSE), regression analysis, 

Probability of Failure on Demand (PFD), safety integrity level, and Risk Reduction Factor 

(RRF).  

The results obtained from the neurologic solver indicate an MSE of 2.98E-09, regression value 

of 0.9978, and a PFD of 9.00E-04. Upon integration of the neurologic solver on the testbed, the 

PFD decreases to 8.52E-04, corresponding to a safety integrity level of 4. In comparison, the 

testbed with a neuro PLC logic solver exhibited a PFD of 1.14E-03, representing a safety 

integrity level of 3. The overall PFD for the neuro-based safety instrument system is determined 

to be 6.44E-03, accompanied by an RRF of 155.279. 
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6.1 Recommendation for future 

a) The study can be further improved considering other highly risk critical technical process 

plant other than distillation plant. 

b) The solution proposed can be practically validated in further studies  
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