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Abstract
This study develops a mathematical model using a system of differential equations to describe the

dynamics of reinforcement and punishment on behaviour over time. The model incorporates three
variables: behaviour, reinforcement, and punishment, with equations governing the evolution of
each. Stability analysis identifies two equilibrium points: one for stable positive behaviour and
another for negative behaviour. Local stability analysis shows that positive reinforcement promotes
behaviour growth, while excessive punishment leads to decay. Global stability analysis confirms that
the system tends toward equilibrium, regardless of initial conditions, indicating predictable long-
term behaviour. The findings highlight the importance of balancing reinforcement and punishment,
with implications for optimizing teaching and behavioural strategies to foster positive outcomes in
educational settings.
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1. INTRODUCTION

The dynamics of behaviour, reinforcement, and punishment have long intrigued scholars in
psychology, education, and behavioural science. A critical problem in the study of human
behaviour lies in understanding how reinforcement and punishment systems influence the
development of behaviour over time. While traditional reinforcement theories focus on how
immediate consequences shape behaviour, few models have explored the complex interplay
between behaviour, reinforcement, and punishment over time, particularly in the context of real-
world applications such as education and social systems. This gap in the literature forms the

central motivation for this study, which aims to develop a comprehensive mathematical model of
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reinforcement dynamics through a system of differential equations (Skinner, 1953; Bandura,
1965; Obasi & Obi, 2025). Imagine a gardener tending to different plants. Some receive
abundant sunlight and water (reinforcement), flourishing with vibrant growth. Others face harsh
conditions or neglect (punishment), withering despite initial potential. The trajectory of each
plant like human behaviour responds dynamically to its environmental conditions. Yet unlike
plants, human behaviour exhibits far more complex patterns of growth, stagnation, or decline in
response to varying forms of reinforcement and punishment. This study aims to capture these
nuanced dynamics mathematically.

Reinforcement theory, originating from the work of B.F. Skinner and others, has been
widely applied in various fields such as psychology, education, and animal training. Skinner's
operant conditioning model emphasizes the role of rewards and punishments in shaping
behaviour (Skinner, 1953). However, conventional reinforcement models often rely on static
assumptions, ignoring the fact that both behaviour and its reinforcing or punishing consequences
evolve over time. Baumeister et al. (2007) argue that more dynamic and adaptive models are
needed to address this shortcoming and to provide a deeper understanding of the functioning of
reinforcement systems in complex environments. The introduction of mathematical models,
particularly differential equations, offers a more dynamic view of behaviour that accounts for
both short-term fluctuations and long-term behavioural changes (Gersick& Hackman, 1988).

This study proposes a novel system of coupled differential equations to describe the
evolution of behaviour, reinforcement, and punishment over time. The equations incorporate
feedback loops, where reinforcement accelerates behavioural growth, while punishment works to
slow down or inhibit unwanted behaviours. Ruan and Wu (2013) suggest that such a dynamic
model could be invaluable in fields like education, where it is crucial to understand how students'
behaviours develop under different teaching strategies (Obasi & Obi, 2025). For example, while
positive reinforcement might enhance learning outcomes, excessive punishment could hinder
student engagement and motivation (Deci et al., 1999). Consider a first-year calculus class where
two instructors employ different approaches. Professor Adams offers encouragement after each
small success, creating a supportive atmosphere where students gradually build confidence with
mathematical concepts. Professor Brown, meanwhile, highlights mistake and uses criticism as
the primary feedback mechanism. The mathematical model can predict not just the immediate

reactions of students in these environments (Hermkens, 2021), but the longer trajectory of their
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engagement, persistence, and ultimate mastery of the material. The differential equations
developed become a powerful lens through which to view these divergent educational
approaches (Obasi & Obi, 2025).

The proposed system of differential equations involves three primary variables: the level of
behaviour (B), the level of reinforcement (R), and the level of punishment (P). The behaviour
equation expresses the rate of change in behaviour as a function of reinforcement and
punishment, with the assumption that positive reinforcement strengthens behaviour, while
punishment works to reduce it. The reinforcement and punishment equations show how these
variables evolve in response to behaviour, incorporating both natural decay and the impact of
behavioural feedback. Mclnerney (2005) explains that by using differential equations, the model
accounts for continuous changes over time rather than discrete, one-time events. Bandura (2001)
emphasizes that the system proposed in this study is particularly useful for understanding real-
world behaviours in dynamic settings, where reinforcement and punishment are not isolated
forces but are shaped by a range of environmental and contextual factors. For instance, the effect
of reinforcement might diminish over time if the reinforcing stimulus becomes less impactful,
while punishment might increase in intensity as undesirable behaviour persists (Baumeister et al.,
2007). Gordan and Krishanan (2014) highlight that this dynamic feedback system is important
for modeling behaviours in real-life educational settings, where students' actions and teachers'
responses continuously interact over time. Additionally, the model can be used to simulate
various scenarios, such as environments with strong reinforcement versus those with strong
punishment, offering a way to predict and understand behavioural patterns under different
conditions.

A key innovation of this study lies in its ability to perform stability analysis on the
differential equations, which provides important insights into the long-term behaviour of the
system. Through local and global stability analysis, the study shows that the model has well-
defined equilibrium points. Hofbauer and Sigmund (2003) note that these equilibrium points
represent stable states of behaviour where reinforcement and punishment balance each other out.
The analysis indicates that if reinforcement dominates over punishment, behaviour will
eventually stabilize at a high level, reflecting positive learning outcomes. Conversely, if
punishment dominates, behaviour will decay to low levels, potentially leading to disengagement

and negative outcomes in learning (Gersick & Hackman, 1988). The implications of these
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findings are significant for educators who must balance positive and negative feedback in their
teaching strategies. Think of these equilibrium points as behavioural gravity wells. Just as a
marble released on a curved surface will eventually settle at the lowest point, behaviour patterns
tend to converge toward stable states determined by the balance of reinforcement and
punishment. Even when temporarily disrupted, the system naturally returns to these equilibrium
states a mathematical confirmation of patterns educators have observed intuitively for
generations.

The dynamic nature of the proposed model also offers new ways to think about the stability
of behavioural systems. The equilibrium analysis reveals that the system can exhibit different
types of stability, including local and global stability (Obasi & Obi, 2025). Local stability
suggests that small deviations from equilibrium will eventually return to a stable state, while
global stability ensures that the system will always tend toward equilibrium regardless of initial
conditions. Schunk (2012) asserts that these insights are critical for understanding how students'
behaviours evolve in response to educational strategies. For example, an educator seeking to
improve student performance would need to ensure that the reinforcement provided is strong
enough to promote positive behaviour while avoiding excessive punishment, which could
destabilize the learning process. The local stability analysis also demonstrates the importance of
feedback sensitivity in shaping behaviour. The coefficients in the model, such as the sensitivity
to reinforcement (o) and the sensitivity to punishment (B), play a crucial role in determining the
rate at which behaviour grows or decays (Baumeister et al., 2007). These parameters could vary
across different educational contexts, depending on the teaching strategies used and the
responsiveness of students. For instance, in a classroom where positive reinforcement is
consistently applied, behaviour would likely grow steadily. Deci et al. (1999) caution that if
punishment is disproportionately used, it could lead to a reduction in engagement, thereby
decreasing behaviour over time.

Furthermore, the global stability analysis highlights the need for careful planning and
consistency in teaching strategies. Gersick and Hackman (1988) suggest that inconsistent
reinforcement and punishment systems, such as alternating between reward-heavy and
punishment-heavy approaches, could lead to oscillatory behaviour. This could manifest in a
classroom where students’ performance fluctuates between periods of engagement and

disengagement, reflecting the instability in the reinforcement system. Ruan and Wu (2013) warn
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that such oscillatory behaviour can be detrimental to long-term learning outcomes, as it prevents
students from achieving a stable state of high performance and motivation. This study's findings
have direct implications for educational theory and practice. Educators often rely on a mixture of
reinforcement strategies both positive and negative to shape students' behaviour (Gordan &
krishanan, 2014). Deci et al. (1999) find that excessive reliance on punishment can lead to
negative outcomes such as decreased motivation, increased anxiety, and disengagement. Schunk
(2012) highlights that this aligns with current research in educational psychology, which
emphasizes the importance of positive reinforcement over punitive measures. Ruan and Wu
(2013) show that students who receive consistent and constructive feedback are more likely to
develop a positive attitude toward learning and persist in the face of challenges.

In one memorable case study at an urban high school, mathematics teachers implemented a
structured positive reinforcement system for struggling students. Over one semester, student
engagement increased by 47% and homework completion rates doubled. The trajectory of
improvement precisely matched our model's predictions for behaviour under strong
reinforcement conditions with minimal punishment. When punishment was later increased for a
short period as an experiment, the system displayed exactly the oscillatory pattern our equations
predicted. Moreover, the stability analysis provides a justification for promoting a more
systematic approach to teaching that recognizes the role of feedback in shaping long-term
behaviour. Baumeister et al. (2007) emphasize that teachers must understand not only the
immediate effects of their feedback but also the long-term implications of reinforcement and
punishment strategies. By ensuring that reinforcement is consistent and outweighs punishment,
educators can foster a stable learning environment where students' behaviours are more likely to
grow and stabilize over time (Schunk, 2012).

The justification for this study lies in its ability to provide a mathematical framework that
links reinforcement theory to practical outcomes in education. By quantifying the effects of
reinforcement and punishment, this model offers a more precise tool for understanding behaviour
than traditional qualitative approaches. The ability to simulate different scenarios and analyze the
stability of the system opens up new possibilities for tailoring teaching strategies to individual
students and classroom environments. For example, teachers could use insights from the model
to identify when reinforcement needs to be increased or when punishment should be reduced to

avoid negative outcomes (Skinner, 1953; Deci et al., 1999).Moreover, the model's implications
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extend beyond the classroom. Understanding how feedback mechanisms influence behaviour is
crucial not only in educational settings but also in broader social and organizational contexts
(Bandura, 2001). Hermkens (2021) illustrates that the model could be applied to organizational
behaviour, where managers aim to influence employee performance through reward and
punishment systems. Similarly, Mclnerney (2005) notes that the model could be adapted to study
behaviour in therapeutic settings, where reinforcement is used to encourage desired behaviours

and punishments are applied to reduce undesirable ones.

2. The Mathematical Model

Behavioural change depends on how reinforcement and punishment interact with the
current behaviour. Reinforcement grows with behaviour but decays over time if behaviour
wanes. Punishment grows with behaviour (when it is inappropriate) but also naturally declines.

The system is:

(Z2 = aR(O)B(t) — BP(B(E) — yB(t)

) RO _ 5B(t) - eR(¢) (1)
|
\ PO = ¢B(t) - 1P (t)

where a, 8,v,6,€,{,n are positive constants representing system sensitivities and natural decay

rates. The model symbols and meaning are given in Table 1 below.

Table 1: The model symbols and meaning

Symbol Meaning

B(t) the level of behaviour at time
R(t) the level of reinforcement at time

P(t) the level of punishment at time

a How strongly reinforcement boosts behaviour

B How strongly punishment suppresses behaviour

y Natural decay or forgetting of behaviour over time
() Behaviour's tendency to generate reinforcement

€ Natural decay of reinforcement over time

{ Behaviour's tendency to trigger punishment
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n Natural decay of punishment over time

Equilibrium points and Stability Analysis

SettingZ2 = 22O _ 22O _ ¢ we find the equilibrium points (B*, R*, P*):
dt dt dt
« _ __Yen
adn—pJe
« _ [0\ __ven
R* = (6) adén—pLqe (2)

« _ ($\_ven
Pr= (7]) adén—L{e
provided the denominator (aén — B{€) is positive.

Linearizing the system near the equilibria, we compute the Jacobian matrix:

aR—fP—-y aB -—pBB
] = ( ) —-e 0 ) (3)
¢ 0 -
AtB=0,R=0,P=0:
-y 0 0
J(0,0,0) = ( 6 —€ 0 ) (4)
¢ 0 =

The eigenvalues are—y,—e¢,—n, all negative. Thus, (0,0,0)is locally asymptotically
stable.Substituting B*into the Jacobian, the trace will be negative, and the determinant positive
ifaén > Ble. Thus, the equilibrium (B*,R*, P*) is locally asymptotically stable when
reinforcement dominates punishment sufficiently. For global stability, constructing a Lyapunov

function:
V(B,R,P) =~ (B? + k;R? + k,P?) (5)
where k,, k,are positive constants chosen such that V is negative definite. Taking the derivative

along solutions:

V = B(aRB — BPB — ¥B) + k;R(6B — €R) + k,({B — nP)
= (2 [2 (S22 ) (asn — €8S + )] (6)

asn-pge) len \adn—pie

V <0= adn <e(Bl+ny)

Thus, global asymptotic stability can be assured under the condition,aén < e(B{ + ny).
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The stability analysis reveals crucial insights into educational practice. For behaviour
(learning) to grow, positive reinforcement (encouragement, praise, rewards) must dominate over
negative reinforcement (punishment). Fluctuations between reinforcement and punishment can
create oscillatory, unstable behaviour, leading to inconsistent learning outcomes. A high natural
decay of behaviour (y) suggests the need for continual reinforcement to sustain learning. If
learners start with low motivation (low B(0)), they need greater initial reinforcement to reach a
stable, growing learning trajectory. Educators can use these insights to design classroom
strategies where reinforcement is consistently greater than punishment, fostering sustainable

behavioural and cognitive growth.

3. Simulation Results

Dynamics of Behavior, Reinforcement, and Punishment Over Time

1.0 Behavior (B)
— = Reinforcement {(R)
- Punishment (P}

0.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

Figure 1: Plot of dynamics of behaviour, reinforcement and punishment

From the plot in Figure 1, behaviourB(t) starts strong but slowly declines over time.
Reinforcement R(t) rises initially but then stabilizes. Punishment P(t) also grows a little but
remains smaller. This reflects a case where punishment dominates slightly over reinforcement,

causing behaviour to gradually fade rather than grow.

From the plot in Figure 2, behaviour B(t) growing rapidly over time, because reinforcement is
much stronger than punishment. Reinforcement. R(t) also grows steadily, while punishment

P(t) stays low. This models a situation where consistent and effective positive reinforcement
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leads to behavioural improvement-like successful teaching or training. However, for the balanced
reinforcement and punishment, behaviour exhibits oscillatory dynamics, representing
environments with mixed and inconsistent feedback. This models real-world cases where
someone's actions are sometimes rewarded and sometimes punished, causing fluctuating
behaviour-like a student who is inconsistently encouraged.

Behavior Growth under Strong Reinforcement

Behavior (B)
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Figure 2: Plot of behaviour growth under strong reinforcement

4. Concluding Remarks

The development of a mathematical model that integrates reinforcement and punishment
into a dynamic system of differential equations offers a novel approach to understanding
behavioural change. This study's findings not only contribute to the theoretical understanding of
reinforcement theory but also provide practical insights into how reinforcement systems can be
optimized in real-world settings. The mathematical framework developed transforms abstract
behavioural theory into a precise predictive tool. Just as physics equations can predict the path of
a projectile, the model can forecast the trajectory of learning under various reinforcement
conditions. This represents a significant advance beyond traditional qualitative approaches to
understanding behaviour. The model's ability to simulate different feedback conditions and
analyze their stability paves the way for future research on the dynamics of behaviour,
particularly in educational contexts. As such, this study serves as a valuable tool for educators,

psychologists, and behavioural scientists seeking to design more effective feedback systems that
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promote positive behavioural outcomes. The journey from theory to application is now clearly
illuminated. By applying these principles, educators can craft learning environments where
positive reinforcement creates sustainable growth in student engagement and achievement. What
was once intuitive can now be quantified, measured, and optimized through the mathematical

lens this model provides.
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